ترغب بنشر مسار تعليمي؟ اضغط هنا

The Progenitor of SN 2005cs in the Whirlpool Galaxy

55   0   0.0 ( 0 )
 نشر من قبل Stephen Smartt
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The progenitor of SN 2005cs, in the galaxy M51, is identified in pre-explosion HST ACS WFC imaging. Differential astrometry, with post-explosion ACS HRC F555W images, permitted the identification of the progenitor with an accuracy of 0.006. The progenitor was detected in the F814W pre-explosion image with I=23.3+/-0.2, but was below the detection thresholds of the F435W and F555W images, with B<24.8 and V<25 at 5-sigma. Limits were also placed on the U and R band fluxes of the progenitor from pre-explosion HST WFPC2 F336W and F675W images. Deep images in the infra-red from NIRI on the Gemini-North telescope were taken 2 months prior to explosion, but the progenitor is not clearly detected on these. The upper limits for the JHK magnitudes of the progenitor were J<21.9,H<21.1 and K<20.7. Despite having a detection in only one band, a restrictive spectral energy distribution of the progenitor star can be constructed and a robust case is made that the progenitor was a red supergiant with spectral type between mid-K to late-M. The spectral energy distribution allows a region in the theoretical HR diagram to be determined which must contain the progenitor star. The initial mass of the star is constrained to be M(ZAMS)=9+3/-2 M_solar, which is very similar to the identified progenitor of the type II-P SN 2003gd, and also consistent with upper mass limits placed on five other similar SNe. The upper limit in the deep K-band image is significant in that it allows us to rule out the possibility that the progenitor was a significantly higher mass object enshrouded in a dust cocoon before core-collapse. This is further evidence that the trend for type II-P SNe to arise in low to moderate mass red supergiants is real.

قيم البحث

اقرأ أيضاً

Early time optical observations of supernova (SN) 2005cs in the Whirlpool Galaxy (M51), are reported. Photometric data suggest that SN 2005cs is a moderately under-luminous Type II plateau supernova (SN IIP). The SN was unusually blue at early epochs (U-B ~ -0.9 about three days after explosion) which indicates very high continuum temperatures. The spectra show relatively narrow P-Cygni features, suggesting ejecta velocities lower than observed in more typical SNe IIP. The earliest spectra show weak absorption features in the blue wing of the He I 5876A absorption component and, less clearly, of H$beta$ and H$alpha$. Based on spectral modelling, two different interpretations can be proposed: these features may either be due to high-velocity H and He I components, or (more likely) be produced by different ions (N II, Si II). Analogies with the low-luminosity, $^{56}$Ni-poor, low-velocity SNe IIP are also discussed. While a more extended spectral coverage is necessary in order to determine accurately the properties of the progenitor star, published estimates of the progenitor mass seem not to be consistent with stellar evolution models.
We present the results of the one year long observational campaign of the type II-plateau SN 2005cs, which exploded in the nearby spiral galaxy M51 (the Whirlpool Galaxy). This extensive dataset makes SN 2005cs the best observed low-luminosity, 56Ni- poor type II-plateau event so far and one of the best core-collapse supernovae ever. The optical and near-infrared spectra show narrow P-Cygni lines characteristic of this SN family, which are indicative of a very low expansion velocity (about 1000 km/s) of the ejected material. The optical light curves cover both the plateau phase and the late-time radioactive tail, until about 380 days after core-collapse. Numerous unfiltered observations obtained by amateur astronomers give us the rare opportunity to monitor the fast rise to maximum light, lasting about 2 days. In addition to optical observations, we also present near-infrared light curves that (together with already published UV observations) allow us to construct for the first time a reliable bolometric light curve for an object of this class. Finally, comparing the observed data with those derived from a semi-analytic model, we infer for SN 2005cs a 56Ni mass of about 0.003 solar masses, a total ejected mass of 8-13 solar masses and an explosion energy of about 3 x 10^50 erg.
We use natural seeing imaging of SN 2013ej in M74 to identify a progenitor candidate in archival {it Hubble Space Telescope} + ACS images. We find a source coincident with the SN in the {it F814W}-filter, however the position of the progenitor candid ate in contemporaneous {it F435W} and {it F555W}-filters is significantly offset. We conclude that the progenitor candidate is in fact two physically unrelated sources; a blue source which is likely unrelated to the SN, and a red source which we suggest exploded as SN 2013ej. Deep images with the same instrument onboard {it HST} taken when the supernova has faded (in approximately two years time) will allow us to accurately characterise the unrelated neighbouring source and hence determine the intrinsic flux of the progenitor in three filters. We suggest that the {it F814W} flux is dominated by the progenitor of SN 2013ej, and assuming a bolometric correction appropriate to an M-type supergiant, we estimate that the mass of the progenitor of SN 2013ej was between 8 -- 15.5 M$_{odot}$.
A source coincident with the position of the type IIb supernova (SN) 2008ax is identified in pre-explosion Hubble Space Telescope (HST) Wide Field Planetary Camera 2 observations in three optical filters. We identify and constrain two possible progen itor systems: (i) a single massive star that lost most of its hydrogen envelope through radiatively driven mass loss processes, prior to exploding as a helium-rich Wolf-Rayet star with a residual hydrogen envelope, and (ii) an interacting binary in a low mass cluster producing a stripped progenitor. Late time, high resolution observations along with detailed modelling of the SN will be required to reveal the true nature of this progenitor star.
Far-UV (1520 ang.), U, H-alpha, and R images of the interacting Sbc spiral galaxy M51 were obtained by the Ultraviolet Imaging Telescope (UIT) and at Mt. Laguna Observatory. The mu(152)-mu(U) radial gradient of >1 mag, becoming bluer with increasing radius, is attributed primarily to a corresponding radial extinction gradient. Magnitudes in both UV bands and H-alpha fluxes are reported for 28 HII regions. Optical extinctions for the 28 corresponding UV sources are computed from the measured m(152)-U colors by fitting to the optical extinctions of Nakai and Kuno (1995). The normalized far-UV extinction A(152)/E(B-V) increases with radius or decreasing metallicity, from 5.99 to 6.54, compared with the Galactic value 8.33. The best-fit m(152)-U color for no extinction, -3.07, is the color of a model solar metallicity starburst of age ~2.5 Myr with IMF slope -1.0. HII regions show decreasing observed H-alpha fluxes with decreasing radius, relative to the H-alpha fluxes predicted from the observed f(152) for age 2.5 Myr, after correction for extinction. We attribute the increasing fraction of ``missing H-alpha flux with decreasing radius to increasing extinction in the Lyman continuum. Increasing extinction-corrected far-UV flux of the HII regions with decreasing radius is probably a result of the corresponding increasing column density of the interstellar gas resulting in larger mass OB associations. The estimated dust-absorbed Lyman continuum flux is ~0.6 times the far-infrared energy flux of M51 observed by IRAS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا