ترغب بنشر مسار تعليمي؟ اضغط هنا

SN 2005cs in M51 II. Complete Evolution in the Optical and the Near-Infrared

104   0   0.0 ( 0 )
 نشر من قبل Andrea Pastorello
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of the one year long observational campaign of the type II-plateau SN 2005cs, which exploded in the nearby spiral galaxy M51 (the Whirlpool Galaxy). This extensive dataset makes SN 2005cs the best observed low-luminosity, 56Ni-poor type II-plateau event so far and one of the best core-collapse supernovae ever. The optical and near-infrared spectra show narrow P-Cygni lines characteristic of this SN family, which are indicative of a very low expansion velocity (about 1000 km/s) of the ejected material. The optical light curves cover both the plateau phase and the late-time radioactive tail, until about 380 days after core-collapse. Numerous unfiltered observations obtained by amateur astronomers give us the rare opportunity to monitor the fast rise to maximum light, lasting about 2 days. In addition to optical observations, we also present near-infrared light curves that (together with already published UV observations) allow us to construct for the first time a reliable bolometric light curve for an object of this class. Finally, comparing the observed data with those derived from a semi-analytic model, we infer for SN 2005cs a 56Ni mass of about 0.003 solar masses, a total ejected mass of 8-13 solar masses and an explosion energy of about 3 x 10^50 erg.



قيم البحث

اقرأ أيضاً

Early time optical observations of supernova (SN) 2005cs in the Whirlpool Galaxy (M51), are reported. Photometric data suggest that SN 2005cs is a moderately under-luminous Type II plateau supernova (SN IIP). The SN was unusually blue at early epochs (U-B ~ -0.9 about three days after explosion) which indicates very high continuum temperatures. The spectra show relatively narrow P-Cygni features, suggesting ejecta velocities lower than observed in more typical SNe IIP. The earliest spectra show weak absorption features in the blue wing of the He I 5876A absorption component and, less clearly, of H$beta$ and H$alpha$. Based on spectral modelling, two different interpretations can be proposed: these features may either be due to high-velocity H and He I components, or (more likely) be produced by different ions (N II, Si II). Analogies with the low-luminosity, $^{56}$Ni-poor, low-velocity SNe IIP are also discussed. While a more extended spectral coverage is necessary in order to determine accurately the properties of the progenitor star, published estimates of the progenitor mass seem not to be consistent with stellar evolution models.
We present optical and near-infrared photometric and spectroscopic observations of SN 2013ej, in galaxy M74, from 1 to 450 days after the explosion. SN 2013ej is a hydrogen-rich supernova, classified as a Type IIL due to its relatively fast decline f ollowing the initial peak. It has a relatively high peak luminosity (absolute magnitude M$_rm{V}$ = -17.6) but a small $^{56}$Ni production of ~0.023 M$_odot$. Its photospheric evolution is similar to other Type II SNe, with shallow absorption in the H{alpha} profile typical for a Type IIL. During transition to the radioactive decay tail at ~100 days, we find the SN to grow bluer in B - V colour, in contrast to some other Type II supernovae. At late times, the bolometric light curve declined faster than expected from $^{56}$Co decay and we observed unusually broad and asymmetric nebular emission lines. Based on comparison of nebular emission lines most sensitive to the progenitor core mass, we find our observations are best matched to synthesized spectral models with a M$_rm{ZAMS}$ = 12 - 15 M$_odot$ progenitor. The derived mass range is similar to but not higher than the mass estimated for Type IIP progenitors. This is against the idea that Type IIL are from more massive stars. Observations are consistent with the SN having a progenitor with a relatively low-mass envelope.
The progenitor of SN 2005cs, in the galaxy M51, is identified in pre-explosion HST ACS WFC imaging. Differential astrometry, with post-explosion ACS HRC F555W images, permitted the identification of the progenitor with an accuracy of 0.006. The proge nitor was detected in the F814W pre-explosion image with I=23.3+/-0.2, but was below the detection thresholds of the F435W and F555W images, with B<24.8 and V<25 at 5-sigma. Limits were also placed on the U and R band fluxes of the progenitor from pre-explosion HST WFPC2 F336W and F675W images. Deep images in the infra-red from NIRI on the Gemini-North telescope were taken 2 months prior to explosion, but the progenitor is not clearly detected on these. The upper limits for the JHK magnitudes of the progenitor were J<21.9,H<21.1 and K<20.7. Despite having a detection in only one band, a restrictive spectral energy distribution of the progenitor star can be constructed and a robust case is made that the progenitor was a red supergiant with spectral type between mid-K to late-M. The spectral energy distribution allows a region in the theoretical HR diagram to be determined which must contain the progenitor star. The initial mass of the star is constrained to be M(ZAMS)=9+3/-2 M_solar, which is very similar to the identified progenitor of the type II-P SN 2003gd, and also consistent with upper mass limits placed on five other similar SNe. The upper limit in the deep K-band image is significant in that it allows us to rule out the possibility that the progenitor was a significantly higher mass object enshrouded in a dust cocoon before core-collapse. This is further evidence that the trend for type II-P SNe to arise in low to moderate mass red supergiants is real.
We present optical and near-infrared (NIR) photometry and spectroscopy of the Type IIb supernova (SN) 2011dh for the first 100 days. We complement our extensive dataset with SWIFT ultra-violet (UV) and Spitzer mid-infrared (MIR) data to build a UV to MIR bolometric lightcurve using both photometric and spectroscopic data. Hydrodynamical modelling of the SN based on this bolometric lightcurve have been presented in Bersten (2012). We find that the absorption minimum for the hydrogen lines is never seen below ~11000 km/s but approaches this value as the lines get weaker. This suggests that the interface between the helium core and hydrogen rich envelope is located near this velocity in agreement with the Bersten et al. (2012) He4R270 ejecta model. Spectral modelling of the hydrogen lines using this ejecta model supports the conclusion and we find a hydrogen mass of 0.01-0.04 solar masses to be consistent with the observed spectral evolution. We estimate that the photosphere reaches the helium core at 5-7 days whereas the helium lines appear between ~10 and ~15 days, close to the photosphere and then move outward in velocity until ~40 days. This suggests that increasing non-thermal excitation due to decreasing optical depth for the gamma-rays is driving the early evolution of these lines. We also provide and discuss pre- and post-explosion observations of the SN site which shows a reduction by 75 percent in flux at the position of the yellow supergiant coincident with SN 2011dh. The B, V and r band decline rates of 0.0073, 0.0090 and 0.0053 mag/day respectively are consistent with the remaining flux being emitted by the SN. Hence we find that the star was indeed the progenitor of SN 2011dh as previously suggested by Maund et al. (2011) and which is also consistent with the results from the hydrodynamical modelling.
We present a new technique for empirically calibrating how the X-ray luminosity function (XLF) of X-ray binary (XRB) populations evolves following a star-formation event. We first utilize detailed stellar population synthesis modeling of far-UV to fa r-IR photometry of the nearby face-on spiral galaxy M51 to construct maps of the star-formation histories (SFHs) on subgalactic (~400 pc) scales. Next, we use the ~850 ks cumulative Chandra exposure of M51 to identify and isolate 2-7 keV detected point sources within the galaxy, and we use our SFH maps to recover the local properties of the stellar populations in which each X-ray source is located. We then divide the galaxy into various subregions based on their SFH properties (e.g., star-formation rate [SFR] per stellar mass [M*] and mass-weighted stellar age) and group the X-ray point sources according to the characteristics of the regions in which they are found. Finally, we construct and fit a parameterized XLF model that quantifies how the XLF shape and normalization evolves as a function of the XRB population age. Our best-fit model indicates the XRB XLF per unit stellar mass declines in normalization, by ~3-3.5 dex, and steepens in slope from ~10 Myr to ~10 Gyr. We find that our technique recovers results from past studies of how XRB XLFs and XRB luminosity scaling relations vary with age and provides a self-consistent picture for how the XRB XLF evolves with age.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا