ترغب بنشر مسار تعليمي؟ اضغط هنا

SN 2005cs in M51 I. The first month of evolution of a subluminous SN II plateau

54   0   0.0 ( 0 )
 نشر من قبل Andrea Pastorello
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Early time optical observations of supernova (SN) 2005cs in the Whirlpool Galaxy (M51), are reported. Photometric data suggest that SN 2005cs is a moderately under-luminous Type II plateau supernova (SN IIP). The SN was unusually blue at early epochs (U-B ~ -0.9 about three days after explosion) which indicates very high continuum temperatures. The spectra show relatively narrow P-Cygni features, suggesting ejecta velocities lower than observed in more typical SNe IIP. The earliest spectra show weak absorption features in the blue wing of the He I 5876A absorption component and, less clearly, of H$beta$ and H$alpha$. Based on spectral modelling, two different interpretations can be proposed: these features may either be due to high-velocity H and He I components, or (more likely) be produced by different ions (N II, Si II). Analogies with the low-luminosity, $^{56}$Ni-poor, low-velocity SNe IIP are also discussed. While a more extended spectral coverage is necessary in order to determine accurately the properties of the progenitor star, published estimates of the progenitor mass seem not to be consistent with stellar evolution models.



قيم البحث

اقرأ أيضاً

We present the results of the one year long observational campaign of the type II-plateau SN 2005cs, which exploded in the nearby spiral galaxy M51 (the Whirlpool Galaxy). This extensive dataset makes SN 2005cs the best observed low-luminosity, 56Ni- poor type II-plateau event so far and one of the best core-collapse supernovae ever. The optical and near-infrared spectra show narrow P-Cygni lines characteristic of this SN family, which are indicative of a very low expansion velocity (about 1000 km/s) of the ejected material. The optical light curves cover both the plateau phase and the late-time radioactive tail, until about 380 days after core-collapse. Numerous unfiltered observations obtained by amateur astronomers give us the rare opportunity to monitor the fast rise to maximum light, lasting about 2 days. In addition to optical observations, we also present near-infrared light curves that (together with already published UV observations) allow us to construct for the first time a reliable bolometric light curve for an object of this class. Finally, comparing the observed data with those derived from a semi-analytic model, we infer for SN 2005cs a 56Ni mass of about 0.003 solar masses, a total ejected mass of 8-13 solar masses and an explosion energy of about 3 x 10^50 erg.
The Type II-Plateau supernova (SN II-P) SN 2004dj was the first SN II-P for which spectropolarimetry data were obtained with fine temporal sampling before, during, and after the fall off of the photometric plateau -- the point that marks the transiti on from the photospheric to the nebular phase in SNe II-P. Unpolarized during the plateau, SN 2004dj showed a dramatic spike in polarization during the descent off of the plateau, and then exhibited a smooth polarization decline over the next two hundred days. This behavior was interpreted by Leonard et al. (2006) as evidence for a strongly non-spherical explosion mechanism that had imprinted asphericity only in the innermost ejecta. In this brief report, we compare nine similarly well-sampled epochs of spectropolarimetry of the Type II-P SN 2008bk to those of SN 2004dj. In contrast to SN 2004dj, SN 2008bk became polarized well before the end of the plateau and also retained a nearly constant level of polarization through the early nebular phase. Curiously, although the onset and persistence of polarization differ between the two objects, the detailed spectropolarimetric characteristics at the epochs of recorded maximum polarization for the two objects are extremely similar, feature by feature. We briefly interpret the data in light of non-Local-Thermodynamic Equilibrium, time-dependent radiative-transfer simulations specifically crafted for SN II-P ejecta.
The progenitor of SN 2005cs, in the galaxy M51, is identified in pre-explosion HST ACS WFC imaging. Differential astrometry, with post-explosion ACS HRC F555W images, permitted the identification of the progenitor with an accuracy of 0.006. The proge nitor was detected in the F814W pre-explosion image with I=23.3+/-0.2, but was below the detection thresholds of the F435W and F555W images, with B<24.8 and V<25 at 5-sigma. Limits were also placed on the U and R band fluxes of the progenitor from pre-explosion HST WFPC2 F336W and F675W images. Deep images in the infra-red from NIRI on the Gemini-North telescope were taken 2 months prior to explosion, but the progenitor is not clearly detected on these. The upper limits for the JHK magnitudes of the progenitor were J<21.9,H<21.1 and K<20.7. Despite having a detection in only one band, a restrictive spectral energy distribution of the progenitor star can be constructed and a robust case is made that the progenitor was a red supergiant with spectral type between mid-K to late-M. The spectral energy distribution allows a region in the theoretical HR diagram to be determined which must contain the progenitor star. The initial mass of the star is constrained to be M(ZAMS)=9+3/-2 M_solar, which is very similar to the identified progenitor of the type II-P SN 2003gd, and also consistent with upper mass limits placed on five other similar SNe. The upper limit in the deep K-band image is significant in that it allows us to rule out the possibility that the progenitor was a significantly higher mass object enshrouded in a dust cocoon before core-collapse. This is further evidence that the trend for type II-P SNe to arise in low to moderate mass red supergiants is real.
119 - N. Elias-Rosa 2009
Through comparison of pre- and post-explosion images obtained with the Wide Field and Planetary Camera 2 onboard the Hubble Space Telescope, we have isolated a supergiant star prior to explosion at nearly the same position as the high-luminosity SN I I-P 2008cn. We provide evidence that this supergiant may well be the progenitor of the SN, although this identification is not entirely unambiguous due mainly to the distance to the host galaxy (NGC 4603), 33.3 Mpc. The progenitor candidate has a more yellow color than generally would be expected and, if a single star, would require that it exploded during a blue loop evolutionary phase. Nonetheless, we estimate an initial mass of Mini = 15 +/- 2 Msun for this star, which is within the expected mass range for SN II-P progenitors. The yellower color could also arise from the blend of two or more stars, such as a red supergiant hidden by a brighter, blue supergiant; or a massive, interacting binary system. Finally, if the yellow supergiant is not the progenitor, or is not a stellar blend or binary containing the progenitor, then we constrain any undetected progenitor star to be a red supergiant with Mini < 11 Msun, considering a physically more realistic scenario of explosion at the model endpoint luminosity for a rotating star. (ABRIDGED)
We present optical and near-infrared photometry and spectroscopy of SN 2009ib, a Type II-P supernova in NGC 1559. This object has moderate brightness, similar to those of the intermediate-luminosity SNe 2008in and 2009N. Its plateau phase is unusuall y long, lasting for about 130 days after explosion. The spectra are similar to those of the subluminous SN 2002gd, with moderate expansion velocities. We estimate the $^{56}$Ni mass produced as $0.046 pm 0.015,{rm M}_{sun}$. We determine the distance to SN 2009ib using both the expanding photosphere method (EPM) and the standard candle method. We also apply EPM to SN 1986L, a type II-P SN that exploded in the same galaxy. Combining the results of different methods, we conclude the distance to NGC 1559 as $D=19.8 pm 3.0$ Mpc. We examine archival, pre-explosion images of the field taken with the Hubble Space Telescope, and find a faint source at the position of the SN, which has a yellow colour ($(V-I)_0 = 0.85$ mag). Assuming it is a single star, we estimate its initial mass as $M_{rm ZAMS}=20,{rm M}_{sun}$. We also examine the possibility, that instead of the yellow source the progenitor of SN 2009ib is a red supergiant star too faint to be detected. In this case we estimate the upper limit for the initial zero-age main sequence mass of the progenitor to be $sim 14-17,{rm M}_{sun}$. In addition, we infer the physical properties of the progenitor at the explosion via hydrodynamical modelling of the observables, and estimate the total energy as $sim 0.55 times 10^{51}$~erg, the pre-explosion radius as $sim 400,{rm R}_{sun}$, and the ejected envelope mass as $sim 15,{rm M}_{sun}$, which implies that the mass of the progenitor before explosion was $sim 16.5-17,{rm M}_{sun}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا