ترغب بنشر مسار تعليمي؟ اضغط هنا

UV Colors and Extinctions of HII Regions in the Whirlpool Galaxy (M51)

43   0   0.0 ( 0 )
 نشر من قبل Michael R. Greason
 تاريخ النشر 1996
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Far-UV (1520 ang.), U, H-alpha, and R images of the interacting Sbc spiral galaxy M51 were obtained by the Ultraviolet Imaging Telescope (UIT) and at Mt. Laguna Observatory. The mu(152)-mu(U) radial gradient of >1 mag, becoming bluer with increasing radius, is attributed primarily to a corresponding radial extinction gradient. Magnitudes in both UV bands and H-alpha fluxes are reported for 28 HII regions. Optical extinctions for the 28 corresponding UV sources are computed from the measured m(152)-U colors by fitting to the optical extinctions of Nakai and Kuno (1995). The normalized far-UV extinction A(152)/E(B-V) increases with radius or decreasing metallicity, from 5.99 to 6.54, compared with the Galactic value 8.33. The best-fit m(152)-U color for no extinction, -3.07, is the color of a model solar metallicity starburst of age ~2.5 Myr with IMF slope -1.0. HII regions show decreasing observed H-alpha fluxes with decreasing radius, relative to the H-alpha fluxes predicted from the observed f(152) for age 2.5 Myr, after correction for extinction. We attribute the increasing fraction of ``missing H-alpha flux with decreasing radius to increasing extinction in the Lyman continuum. Increasing extinction-corrected far-UV flux of the HII regions with decreasing radius is probably a result of the corresponding increasing column density of the interstellar gas resulting in larger mass OB associations. The estimated dust-absorbed Lyman continuum flux is ~0.6 times the far-infrared energy flux of M51 observed by IRAS.


قيم البحث

اقرأ أيضاً

The kinematic complexity and the favorable position of M51 on the sky make this galaxy an ideal target to test different theories of spiral arm dynamics. Taking advantage of the new high resolution PdBI Arcsecond Whirlpool Survey (PAWS) data, we unde rtake a detailed kinematic study of M51 to characterize and quantify the origin and nature of the non-circular motions. Using a tilted-ring analysis supported by several other archival datasets we update the estimation of M51s position angle (PA=(173 +/- 3) deg) and inclination (i=(22 +/- 5) deg). Harmonic decomposition of the high resolution (40 pc) CO velocity field shows the first kinematic evidence of an m=3 wave in the inner disk of M51 with a corotation at R(CR,m=3)=1.1 +/- 0.1 kpc and a pattern speed of Omega_p(m=3) = 140 km/(s kpc). This mode seems to be excited by the nuclear bar, while the beat frequencies generated by the coupling between the m=3 mode and the main spiral structure confirm its density-wave nature. We observe also a signature of an m=1 mode that is likely responsible for the lopsidedness of M51 at small and large radii. We provide a simple method to estimate the radial variation of the amplitude of the spiral perturbation (Vsp) attributed to the different modes. The main spiral arm structure has <Vsp>=50-70 km/s, while the streaming velocity associated with the m=1 and m=3 modes is, in general, 2 times lower. Our joint analysis of HI and CO velocity fields at low and high spatial resolution reveals that the atomic and molecular gas phases respond differently to the spiral perturbation due to their different vertical distribution and emission morphology.
The progenitor of SN 2005cs, in the galaxy M51, is identified in pre-explosion HST ACS WFC imaging. Differential astrometry, with post-explosion ACS HRC F555W images, permitted the identification of the progenitor with an accuracy of 0.006. The proge nitor was detected in the F814W pre-explosion image with I=23.3+/-0.2, but was below the detection thresholds of the F435W and F555W images, with B<24.8 and V<25 at 5-sigma. Limits were also placed on the U and R band fluxes of the progenitor from pre-explosion HST WFPC2 F336W and F675W images. Deep images in the infra-red from NIRI on the Gemini-North telescope were taken 2 months prior to explosion, but the progenitor is not clearly detected on these. The upper limits for the JHK magnitudes of the progenitor were J<21.9,H<21.1 and K<20.7. Despite having a detection in only one band, a restrictive spectral energy distribution of the progenitor star can be constructed and a robust case is made that the progenitor was a red supergiant with spectral type between mid-K to late-M. The spectral energy distribution allows a region in the theoretical HR diagram to be determined which must contain the progenitor star. The initial mass of the star is constrained to be M(ZAMS)=9+3/-2 M_solar, which is very similar to the identified progenitor of the type II-P SN 2003gd, and also consistent with upper mass limits placed on five other similar SNe. The upper limit in the deep K-band image is significant in that it allows us to rule out the possibility that the progenitor was a significantly higher mass object enshrouded in a dust cocoon before core-collapse. This is further evidence that the trend for type II-P SNe to arise in low to moderate mass red supergiants is real.
Using data from the PdBI Arcsecond Whirlpool Survey (PAWS), we have generated the largest extragalactic Giant Molecular Cloud (GMC) catalog to date, containing 1,507 individual objects. GMCs in the inner M51 disk account for only 54% of the total 12C O(1-0) luminosity of the survey, but on average they exhibit physical properties similar to Galactic GMCs. We do not find a strong correlation between the GMC size and velocity dispersion, and a simple virial analysis suggests that 30% of GMCs in M51 are unbound. We have analyzed the GMC properties within seven dynamically-motivated galactic environments, finding that GMCs in the spiral arms and in the central region are brighter and have higher velocity dispersions than inter-arm clouds. Globally, the GMC mass distribution does not follow a simple power law shape. Instead, we find that the shape of the mass distribution varies with galactic environment: the distribution is steeper in inter-arm region than in the spiral arms, and exhibits a sharp truncation at high masses for the nuclear bar region. We propose that the observed environmental variations in the GMC properties and mass distributions are a consequence of the combined action of large-scale dynamical processes and feedback from high mass star formation. We describe some challenges of using existing GMC identification techniques for decomposing the 12CO(1-0) emission in molecule-rich environments, such as M51s inner disk.
Based on the ISO spectral catalogue of compact HII regions by Peeters et al. (2001), we present a first analysis of the hydrogen recombination and atomic fine-structure lines originated in the ionized gas. The sample consists of 34 HII regions locate d at galactocentric distances between Rgal = 0 and 15 kpc. The SWS HI recombination lines between 2 and 8 mum are used to estimate the extinction law at these wavelengths for 14 HII regions. An extinction in the K band between 0 and $sim$ 3 mag. has been derived. The fine-structure lines of N, O, Ne, S and Ar are detected in most of the sources. Most of these elements are observed in two different ionization stages probing a range in ionization potential up to 41 eV. The ISO data, by itself or combined with radio data taken from the literature, is used to derive the elemental abundances relative to hydrogen. The present data thus allow us to describe for each source its elemental abundance, its state of ionization and to constrain the properties of the ionizing star(s).
Context. The derived physical parameters for young HII regions are normally determined assuming the emission region to be optically thin. However, this assumption is unlikely to hold for young HII regions such as hyper-compact HII(HCHII) and ultra-co mpact HII(UCHII) regions and leads to the underestimation of their properties. This can be overcome by fitting the SEDs over a wide range of radio frequencies. Aims. The two primary goals of this study are (1) to determine the physical properties of young HII regions from radio SEDs in the search for potential HCHII regions, and (2) to use these physical properties to investigate their evolution. Method. We used the Karl G. Jansky Very Large Array (VLA) to observe the X-band and K-band with angular resolutions of ~1.7 and ~0.7, respectively, toward 114 HII regions with rising-spectra between 1-5 GHz. We complement our observations with VLA archival data and construct SEDs in the range of 1-26 GHz and model them assuming an ionization-bounded HII region with uniform density. Results. Our sample has a mean electron density of ne=1.6E4cm^{-3}, diameter diam=0.14pc, and emission measure EM = 1.9E7pc*cm^{-6}. We identify 16 HCHII region candidates and 8 intermediate objects between the classes of HCHII and UCHII regions. The ne, diam, and EM change as expected, but the Lyman continuum flux is relatively constant over time. We find that about 67% of Lyman-continuum photons are absorbed by dust within these HII regions and the dust absorption fraction tends to be more significant for more compact and younger HII regions. Conclusion. Young HII regions are commonly located in dusty clumps; HCHII regions and intermediate objects are often associated with various masers, outflows, broad radio recombination lines, and extended green objects, and the accretion at the two stages tends to be quickly reduced or halted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا