ترغب بنشر مسار تعليمي؟ اضغط هنا

A non-LTE analysis of the spectra of two narrow lined main sequence stars in the SMC

131   0   0.0 ( 0 )
 نشر من قبل Ian Hunter
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An analysis of high-resolution VLT/UVES spectra of two B-type main sequence stars, NGC 346-11 and AV 304, in the Small Magellanic Cloud (SMC), has been undertaken, using the non-LTE TLUSTY model atmospheres to derive the stellar parameters and chemical compositions of each star. The chemical compositions of the two stars are in reasonable agreement. Moreover, our stellar analysis agrees well with earlier analyses of H II regions. The results derived here should be representative of the current base-line chemical composition of the SMC interstellar medium as derived from B-type stars.

قيم البحث

اقرأ أيضاً

We present ground-based {it B} and {it R}-band color-magnitude diagrams (CMDs) of unprecedented depth for twelve fields in the Small Magellanic Cloud (SMC). They reach the oldest main-sequence turnoffs and cover a wide range of galactocentric distanc es up to $sim4arcdeg$ from the SMC center, and are located at different position angles. A picture of the stellar content in our SMC fields is presented, through the comparison with theoretical isochrones. Our study confirms the existence of strong population gradients and spatial variation in the SMC stellar content. None of the SMC fields presented here are dominated by old stellar populations which proves that at $sim4arcdeg$ from the SMC center we do not reach an old stellar halo similar to that of the Milky Way.
This paper describes the analysis of UVES and GIRAFFE spectra acquired by the Gaia-ESO Public Spectroscopic Survey in the fields of young clusters whose population includes pre-main sequence (PMS) stars. Both methods that have been extensively used i n the past and new ones developed in the contest of the Gaia-ESO survey enterprise are available and used. The internal precision of these quantities is estimated by inter-comparing the results obtained by such different methods, while the accuracy is estimated by comparison with independent external data, like effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. Specific strategies are implemented to deal with fast rotation, accretion signatures, chromospheric activity, and veiling. The analysis carried out on spectra acquired in young clusters fields during the first 18 months of observations, up to June 2013, is presented in preparation of the first release of advanced data products. Stellar parameters obtained with the higher resolution and larger wavelength coverage from UVES are reproduced with comparable accuracy and precision using the smaller wavelength range and lower resolution of the GIRAFFE setup adopted for young stars, which allows us to provide with confidence stellar parameters for the much larger GIRAFFE sample. Precisions are estimated to be $approx$ 120 K r.m.s. in Teff, $approx$0.3 dex r.m.s. in logg, and $approx$0.15 dex r.m.s. in [Fe/H], for both the UVES and GIRAFFE setups.
Older GCE models predict [K/Fe] ratios as much as 1 dex lower than those inferred from stellar observations. Abundances of potassium are mainly based on analyses of the 7698 $AA$ resonance line, and the discrepancy between models and observations is in part caused by the LTE assumption. We study the statistical equilibrium of KI, focusing on the non-LTE effects on the $7698 AA$ line. We aim to determine how non-LTE abundances of K can improve the analysis of its chemical evolution, and help to constrain the yields of models. We construct a model atom that employs the most up-to-date data. In particular, we calculate and present inelastic e+K collisional excitation cross-sections from the convergent close-coupling and the $B$-Spline $R$-matrix methods, and H+K collisions from the two-electron model. We constructed a fine grid of non-LTE abundance corrections that span $4000<teff / rm{K}<8000$, $0.50<lgg<5.00$, $-5.00<feh<+0.50$, and applied the corrections to abundances from the literature. In concordance with previous studies, we find severe non-LTE effects in the $7698 AA$ line, which is stronger in non-LTE with abundance corrections that can reach $sim-0.7,dex$. We explore the effects of atmospheric inhomogeneity by computing a full 3D non-LTE stellar spectrum of KI for a test star. We find that 3D is necessary to predict a correct shape of the resonance 7698 $AA$ line, but the line strength is similar to that found in 1D non-LTE. Our non-LTE abundance corrections reduce the scatter and change the cosmic trends of literature K abundances. In the regime [Fe/H]$lesssim-1.0$ the non-LTE abundances show a good agreement with the GCE model with yields from rotating massive stars. The reduced scatter of the non-LTE corrected abundances of a sample of solar twins shows that line-by-line differential analysis techniques cannot fully compensate for systematic modelling errors.
172 - M. Jura , C. H. Chen , E. Furlan 2004
We report spectra obtained with the Spitzer Space Telescope in the wavelength range between 14 microns and 35 microns of 19 nearby main-sequence stars with infrared excesses. The six stars with strong dust emission show no recognizable spectral featu res, suggesting that the bulk of the emitting particles have diameters larger than 10 microns. If the observed dust results from collisional grinding of larger solids, we infer minimum masses of the parent body population between 0.004 of the Earths mass and 0.06 of the Earths mass. We estimate grain production rates of 10 Gg/s around lambda Boo and HR 1570; selective accretion of this matter may help explain their peculiar surface abundances. There appear to be inner truncations in the dust clouds at 48 AU, 11 AU, 52 AU and 54 AU around HR 333, HR 506, HR 1082 and HR 3927, respectively.
The mid-IR detection rate of water lines in disks around Herbig stars disks is about 5%, while it is around 50% for disks around TTauri stars. The reason for this is still unclear. In this study, we want to find an explanation for the different detec tion rates between low mass and high mass pre-main-sequence stars (PMSs) in the mid-IR regime. We run disk models with stellar parameters adjusted to spectral types B9 through M2, using the radiation thermo-chemical disk modeling code ProDiMo. We produce convolved spectra at the resolution of Spitzer IRS, JWST MIRI and VLT VISIR spectrographs. We apply random noise derived from typical Spitzer spectra for a direct comparison with observations. The strength of the mid-IR water lines correlates directly with the luminosity of the central star. We explored a small parameter space around a standard disk model, considering dust-to-gas mass ratio, disk gas mass, mixing coefficient for dust settling, flaring index, dust maximum size and size power law distribution index. The models show that it is possible to suppress the water emission, however, current observations are not sensitive enough to detect mid-IR lines in disks for most of the explored parameters. The presence of noise in the spectra, combined with the high continuum flux (noise level is proportional to the continuum flux), is the most likely explanation for the non detections towards Herbig stars. Mid-IR spectra with resolution higher than 20000 are needed to investigate water in protoplanetary disks. Intrinsic differences in disk structure, e.g. inner gaps, gas-to-dust ratio, dust size and distribution, and inner disk scale height, between Herbig and TTauri star disks are able to explain a lower water detection rate in disks around Herbig stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا