ترغب بنشر مسار تعليمي؟ اضغط هنا

Mid-Infrared Spectra of Dust Debris Around Main-Sequence Stars

173   0   0.0 ( 0 )
 نشر من قبل Michael Jura
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report spectra obtained with the Spitzer Space Telescope in the wavelength range between 14 microns and 35 microns of 19 nearby main-sequence stars with infrared excesses. The six stars with strong dust emission show no recognizable spectral features, suggesting that the bulk of the emitting particles have diameters larger than 10 microns. If the observed dust results from collisional grinding of larger solids, we infer minimum masses of the parent body population between 0.004 of the Earths mass and 0.06 of the Earths mass. We estimate grain production rates of 10 Gg/s around lambda Boo and HR 1570; selective accretion of this matter may help explain their peculiar surface abundances. There appear to be inner truncations in the dust clouds at 48 AU, 11 AU, 52 AU and 54 AU around HR 333, HR 506, HR 1082 and HR 3927, respectively.

قيم البحث

اقرأ أيضاً

We report long-baseline interferometric measurements of circumstellar dust around massive evolved stars with the MIDI instrument on the Very Large Telescope Interferometer and provide spectrally dispersed visibilities in the 8-13 micron wavelength ba nd. We also present diffraction-limited observations at 10.7 micron on the Keck Telescope with baselines up to 8.7 m which explore larger scale structure. We have resolved the dust shells around the late type WC stars WR 106 and WR 95, and the enigmatic NaSt1 (formerly WR 122), suspected to have recently evolved from a Luminous Blue Variable (LBV) stage. For AG Car, the protoypical LBV in our sample, we marginally resolve structure close to the star, distinct from the well-studied detached nebula. The dust shells around the two WC stars show fairly constant size in the 8-13 micron MIDI band, with gaussian half-widths of ~ 25 to 40 mas. The compact dust we detect around NaSt1 and AG Car favors recent or ongoing dust formation. Using the measured visibilities, we build spherically symmetric radiative transfer models of the WC dust shells which enable detailed comparison with existing SED-based models. Our results indicate that the inner radii of the shells are within a few tens of AU from the stars. In addition, our models favor grain size distributions with large (~ 1 micron) dust grains. This proximity of the inner dust to the hot central star emphasizes the difficulty faced by current theories in forming dust in the hostile environment around WR stars. Although we detect no direct evidence for binarity for these objects, dust production in a colliding-wind interface in a binary system is a feasible mechanism in WR systems under these conditions.
A warm/hot dust component (at temperature $>$ 300K) has been detected around $sim$ 20% of stars. This component is called exozodiacal dust as it presents similarities with the zodiacal dust detected in our Solar System, even though its physical prope rties and spatial distribution can be significantly different. Understanding the origin and evolution of this dust is of crucial importance, not only because its presence could hamper future detections of Earth-like planets in their habitable zones, but also because it can provide invaluable information about the inner regions of planetary systems. In this review, we present a detailed overview of the observational techniques used in the detection and characterisation of exozodiacal dust clouds (exozodis) and the results they have yielded so far, in particular regarding the incidence rate of exozodis as a function of crucial parameters such as stellar type and age, or the presence of an outer cold debris disc. We also present the important constraints that have been obtained, on dust size distribution and spatial location, by using state-of-the-art radiation transfer models on some of these systems. Finally, we investigate the crucial issue of how to explain the presence of exozodiacal dust around so many stars (regardless of their ages) despite the fact that such dust so close to its host star should disappear rapidly due to the coupled effect of collisions and stellar radiation pressure. Several potential mechanisms have been proposed to solve this paradox and are reviewed in detail in this paper. The review finishes by presenting the future of this growing field.
Millimetre continuum observations of debris discs can provide insights into the physical and dynamical properties of the unseen planetesimals that these discs host. The material properties and collisional models of planetesimals leave their signature on the grain size distribution, which can be traced through the millimetre spectral index. We present 8.8 mm observations of the debris discs HD 48370, CPD 72 2713, HD 131488, and HD 32297 using the Australian Telescope Compact Array (ATCA) as part of the PLanetesimals Around TYpicalPre-main seqUence Stars (PLATYPUS) survey. We detect all four targets with a characteristic beam size of 5 arcseconds and derive a grain size distribution parameter that is consistent with collisional cascade models and theoretical predictions for parent planetesimal bodies where binding is dominated by self-gravity. We combine our sample with 19 other millimetre-wavelength detected debris discs from the literature and calculate a weighted mean grain size power law index which is close to analytical predictions for a classical steady state collisional cascade model. We suggest the possibility of two distributions of q in our debris disc sample; a broad distribution (where q is approximately 3.2 to 3.7) for typical debris discs (gas-poor/non-detection), and a narrow distribution (where q is less than 3.2) for bright gas-rich discs. Or alternatively, we suggest that there exists an observational bias between the grain size distribution parameter and absolute flux which may be attributed to the detection rates of faint debris discs at cm wavelengths.
Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ ar e based on 1-D, cloud-free, climate model calculations by Kasting et al.(1993). The inner edge of the HZ in Kasting et al.(1993) model was determined by loss of water, and the outer edge was determined by the maximum greenhouse provided by a CO2 atmosphere. A conservative estimate for the width of the HZ from this model in our Solar system is 0.95-1.67 AU. Here, an updated 1-D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K and M stars. New H2O and CO2 absorption coefficients, derived from the HITRAN 2008 and HITEMP 2010 line-by-line databases, are important improvements to the climate model. According to the new model, the water loss (inner HZ) and maximum greenhouse (outer HZ) limits for our Solar System are at 0.99 AU and 1.70 AU, respectively, suggesting that the present Earth lies near the inner edge. Additional calculations are performed for stars with effective temperatures between 2600 K and 7200 K, and the results are presented in parametric form, making them easy to apply to actual stars. The new model indicates that, near the inner edge of the HZ, there is no clear distinction between runaway greenhouse and water loss limits for stars with T_{eff} ~< 5000 K which has implications for ongoing planet searches around K and M stars. To assess the potential habitability of extrasolar terrestrial planets, we propose using stellar flux incident on a planet rather than equilibrium temperature. Our model does not include the radiative effects of clouds; thus, the actual HZ boundaries may extend further in both directions than the estimates just given.
The Keck Interferometer Nuller (KIN) was used to survey 25 nearby main sequence stars in the mid-infrared, in order to assess the prevalence of warm circumstellar (exozodiacal) dust around nearby solar-type stars. The KIN measures circumstellar emiss ion by spatially blocking the star but transmitting the circumstellar flux in a region typically 0.1 - 4 AU from the star. We find one significant detection (eta Crv), two marginal detections (gamma Oph and alpha Aql), and 22 clear non-detections. Using a model of our own Solar Systems zodiacal cloud, scaled to the luminosity of each target star, we estimate the equivalent number of target zodis needed to match our observations. Our three zodi detections are eta Crv (1250 +/- 260), gamma Oph (200 +/- 80) and alpha Aql (600 +/- 200), where the uncertainties are 1-sigma. The 22 non-detected targets have an ensemble weighted average consistent with zero, with an average individual uncertainty of 160 zodis (1-sigma). These measurements represent the best limits to date on exozodi levels for a sample of nearby main sequence stars. A statistical analysis of the population of 23 stars not previously known to contain circumstellar dust (excluding eta Crv and gamma Oph) suggests that, if the measurement errors are uncorrelated (for which we provide evidence) and if these 23 stars are representative of a single class with respect to the level of exozodi brightness, the mean exozodi level for the class is <150 zodis (3-sigma upper-limit, corresponding to 99% confidence under the additional assumption that the measurement errors are Gaussian). We also demonstrate that this conclusion is largely independent of the shape and mean level of the (unknown) true underlying exozodi distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا