ترغب بنشر مسار تعليمي؟ اضغط هنا

Gaia-ESO Survey: The analysis of pre-main sequence stellar spectra

143   0   0.0 ( 0 )
 نشر من قبل Alessandro Lanzafame C.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper describes the analysis of UVES and GIRAFFE spectra acquired by the Gaia-ESO Public Spectroscopic Survey in the fields of young clusters whose population includes pre-main sequence (PMS) stars. Both methods that have been extensively used in the past and new ones developed in the contest of the Gaia-ESO survey enterprise are available and used. The internal precision of these quantities is estimated by inter-comparing the results obtained by such different methods, while the accuracy is estimated by comparison with independent external data, like effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. Specific strategies are implemented to deal with fast rotation, accretion signatures, chromospheric activity, and veiling. The analysis carried out on spectra acquired in young clusters fields during the first 18 months of observations, up to June 2013, is presented in preparation of the first release of advanced data products. Stellar parameters obtained with the higher resolution and larger wavelength coverage from UVES are reproduced with comparable accuracy and precision using the smaller wavelength range and lower resolution of the GIRAFFE setup adopted for young stars, which allows us to provide with confidence stellar parameters for the much larger GIRAFFE sample. Precisions are estimated to be $approx$ 120 K r.m.s. in Teff, $approx$0.3 dex r.m.s. in logg, and $approx$0.15 dex r.m.s. in [Fe/H], for both the UVES and GIRAFFE setups.



قيم البحث

اقرأ أيضاً

188 - L. Spina , S. Randich , F. Palla 2014
Knowledge of the abundance distribution of star forming regions and young clusters is critical to investigate a variety of issues, from triggered star formation and chemical enrichment by nearby supernova explosions to the ability to form planetary s ystems.In spite of this, detailed abundance studies are currently available for relatively few regions. In this context, we present the analysis of the metallicity of the Gamma Velorum cluster, based on the products distributed in the first internal release of the Gaia-ESO Survey. The Gamma Velorum candidate members have been observed with FLAMES, using both UVES and Giraffe, depending on the target brightness and spectral type. In order to derive a solid metallicity determination for the cluster, membership of the observed stars must be first assessed. To this aim, we use several membership criteria including radial velocities, surface gravity estimates, and the detection of the photospheric lithium line. Out of the 80 targets observed with UVES, we identify 14 high-probability members. We find that the metallicity of the cluster is slightly subsolar, with a mean [Fe/H]=-0.057+/-0.018 dex. Although J08095427-4721419 is one of the high-probability members, its metallicity is significantly larger than the cluster average. We speculate about its origin as the result of recent accretion episodes of rocky bodies of ~60 M_Sun hydrogen-depleted material from the circumstellar disk.
149 - L. Spina , S. Randich , L. Magrini 2017
The radial metallicity distribution in the Galactic thin disc represents a crucial constraint for modelling disc formation and evolution. Open clusters allow us to derive both the radial metallicity distribution and its evolution over time. In this p aper we perform the first investigation of the present-day radial metallicity distribution based on [Fe/H] determinations in late type members of pre-main-sequence clusters. Because of their youth, these clusters are therefore essential for tracing the current inter-stellar medium metallicity. We used the products of the Gaia-ESO Survey analysis of 12 young regions (age<100 Myr), covering Galactocentric distances from 6.67 to 8.70 kpc. For the first time, we derived the metal content of star forming regions farther than 500 pc from the Sun. Median metallicities were determined through samples of reliable cluster members. For ten clusters the membership analysis is discussed in the present paper, while for other two clusters (Chamaeleon I and Gamma Velorum) we adopted the members identified in our previous works. All the pre-main-sequence clusters considered in this paper have close-to-solar or slightly sub-solar metallicities. The radial metallicity distribution traced by these clusters is almost flat, with the innermost star forming regions having [Fe/H] values that are 0.10-0.15 dex lower than the majority of the older clusters located at similar Galactocentric radii. This homogeneous study of the present-day radial metallicity distribution in the Galactic thin disc favours models that predict a flattening of the radial gradient over time. On the other hand, the decrease of the average [Fe/H] at young ages is not easily explained by the models. Our results reveal a complex interplay of several processes (e.g. star formation activity, initial mass function, supernova yields, gas flows) that controlled the recent evolution of the Milky Way.
We show that non-magnetic models for the evolution of pre-main-sequence (PMS) stars *cannot* simultaneously describe the colour-magnitude diagram (CMD) and the pattern of lithium depletion seen in the cluster of young, low-mass stars surrounding $gam ma^2$ Velorum. The age of 7.5+/-1 Myr inferred from the CMD is much younger than that implied by the strong Li depletion seen in the cluster M-dwarfs and the Li depletion occurs at much redder colours than predicted. The epoch at which a star of a given mass depletes its Li and the surface temperature of that star are both dependent on its radius. We demonstrate that if the low-mass stars have radii ~10 per cent larger at a given mass and age, then both the CMD and Li depletion pattern of the Gamma Vel cluster are explained at a common age of 18-21 Myr. This radius inflation could be produced by some combination of magnetic suppression of convection and extensive cool starspots. Models that incorporate radius inflation suggest that PMS stars similar to those in the Gamma Vel cluster, in the range 0.2<M/Msun<0.7, are at least a factor of two older and ~7 per cent cooler than previously thought and that their masses are much larger (by >30 per cent) than inferred from conventional, non-magnetic models in the Hertzsprung-Russell diagram. Systematic changes of this size may be of great importance in understanding the evolution of young stars, disc lifetimes and the formation of planetary systems.
101 - C. C. Worley 2020
The extensive stellar spectroscopic datasets that are available for studies in Galactic Archeaology thanks to, for example, the Gaia-ESO Survey, now benefit from having a significant number of targets that overlap with asteroseismology projects such as Kepler, K2 and CoRoT. Combining the measurements from spectroscopy and asteroseismology allows us to attain greater accuracy with regard to the stellar parameters needed to characterise the stellar populations of the Milky Way. The aim of this Gaia-ESO Survey special project is to produce a catalogue of self-consistent stellar parameters by combining measurements from high-resolution spectroscopy and precision asteroseismology. We carried out an iterative analysis of 90 K2@Gaia-ESO red giants. The spectroscopic values of Teff were used as input in the seismic analysis to obtain log(g) values. The seismic estimates of log(g) were then used to re-determine the spectroscopic values of Teff and [Fe/H]. Only one iteration was required to obtain parameters that are in good agreement for both methods and thus, to obtain the final stellar parameters. A detailed analysis of outliers was carried out to ensure a robust determination of the parameters. The results were then combined with Gaia DR2 data to compare the seismic log(g) with a parallax-based log(g) and to investigate instances of variations in the velocity and possible binaries within the dataset. This analysis produced a high-quality catalogue of stellar parameters for 90 red giant stars observed by both K2 and Gaia-ESO that were determined through iterations between spectroscopy and asteroseismology. We compared the seismic gravities with those based on Gaia parallaxes to find an offset which is similar to other studies that have used asteroseismology. Our catalogue also includes spectroscopic chemical abundances and radial velocities, as well as indicators for possible binary detections.
The Gaia-ESO Survey is obtaining high-quality spectroscopic data for about 10^5 stars using FLAMES at the VLT. UVES high-resolution spectra are being collected for about 5000 FGK-type stars. These UVES spectra are analyzed in parallel by several stat e-of-the-art methodologies. Our aim is to present how these analyses were implemented, to discuss their results, and to describe how a final recommended parameter scale is defined. We also discuss the precision (method-to-method dispersion) and accuracy (biases with respect to the reference values) of the final parameters. These results are part of the Gaia-ESO 2nd internal release and will be part of its 1st public release of advanced data products. The final parameter scale is tied to the one defined by the Gaia benchmark stars, a set of stars with fundamental atmospheric parameters. A set of open and globular clusters is used to evaluate the physical soundness of the results. Each methodology is judged against the benchmark stars to define weights in three different regions of the parameter space. The final recommended results are the weighted-medians of those from the individual methods. The recommended results successfully reproduce the benchmark stars atmospheric parameters and the expected Teff-log g relation of the calibrating clusters. Atmospheric parameters and abundances have been determined for 1301 FGK-type stars observed with UVES. The median of the method-to-method dispersion of the atmospheric parameters is 55 K for Teff, 0.13 dex for log g, and 0.07 dex for [Fe/H]. Systematic biases are estimated to be between 50-100 K for Teff, 0.10-0.25 dex for log g, and 0.05-0.10 dex for [Fe/H]. Abundances for 24 elements were derived: C, N, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, Nd, and Eu. The typical method-to-method dispersion of the abundances varies between 0.10 and 0.20 dex.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا