ترغب بنشر مسار تعليمي؟ اضغط هنا

Mid-IR spectra of Pre-Main Sequence Herbig stars: an explanation for the non-detections of water lines

83   0   0.0 ( 0 )
 نشر من قبل Stefano Antonellini
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The mid-IR detection rate of water lines in disks around Herbig stars disks is about 5%, while it is around 50% for disks around TTauri stars. The reason for this is still unclear. In this study, we want to find an explanation for the different detection rates between low mass and high mass pre-main-sequence stars (PMSs) in the mid-IR regime. We run disk models with stellar parameters adjusted to spectral types B9 through M2, using the radiation thermo-chemical disk modeling code ProDiMo. We produce convolved spectra at the resolution of Spitzer IRS, JWST MIRI and VLT VISIR spectrographs. We apply random noise derived from typical Spitzer spectra for a direct comparison with observations. The strength of the mid-IR water lines correlates directly with the luminosity of the central star. We explored a small parameter space around a standard disk model, considering dust-to-gas mass ratio, disk gas mass, mixing coefficient for dust settling, flaring index, dust maximum size and size power law distribution index. The models show that it is possible to suppress the water emission, however, current observations are not sensitive enough to detect mid-IR lines in disks for most of the explored parameters. The presence of noise in the spectra, combined with the high continuum flux (noise level is proportional to the continuum flux), is the most likely explanation for the non detections towards Herbig stars. Mid-IR spectra with resolution higher than 20000 are needed to investigate water in protoplanetary disks. Intrinsic differences in disk structure, e.g. inner gaps, gas-to-dust ratio, dust size and distribution, and inner disk scale height, between Herbig and TTauri star disks are able to explain a lower water detection rate in disks around Herbig stars.

قيم البحث

اقرأ أيضاً

The bulk of X-ray emission from pre-main-sequence (PMS) stars is coronal in origin. We demonstrate herein that stars on Henyey tracks in the Hertzsprung-Russell diagram have lower $log(L_X/L_ast)$, on average, than stars on Hayashi tracks. This effec t is driven by the decay of $L_X$ once stars develop radiative cores. $L_X$ decays faster with age for intermediate mass PMS stars, the progenitors of main sequence A-type stars, compared to those of lower mass. As almost all main sequence A-type stars show no detectable X-ray emission, we may already be observing the loss of their coronae during their PMS evolution. Although there is no direct link between the size or mass of the radiative core and $L_X$, the longer stars have spent with partially convective interiors, the weaker their X-ray emission becomes. This conference paper is a synopsis of Gregory, Adams and Davies (2016).
293 - G. W. Doppmann 2003
We present high resolution (R=50,000) spectra at 2.2 um of 16 young stars in the rho Ophiuchi dark cloud. Photospheric features are detected in the spectra of 11 of these sources, all Class II young stellar objects. In 10 of these sources, we measure effective temperatures, continuum veiling, and vsini rotation from the shapes and strengths of atomic photospheric lines by comparing to spectral synthesis models at 2.2 um. We measure surface gravities in 2 stars from the integrated line flux ratio of the 12CO line region at 2.3 um and the Na I line region at 2.2 um. Although the majority (8/10) of the Class II stars have similar effective temperatures (3530 K +/-100 K), they exhibit a large spread in bolometric luminosities (factor ~8), as derived from near-IR photometry. In the two stars where we have surface gravity measurements from spectroscopy, the photometrically derived luminosities are systematically higher than the spectroscopic luminosities. Our spectroscopic luminosities result in older ages on the H-R diagram than is suggested by photometry at J or K. Most of our sources show a substantially larger amount of continuum excess than stellar flux at 2.2 um. The derived veiling values at K appear correlated with mid-IR disk luminosity, and with Brackett gamma equivalent width, corrected for veiling. The derived vsini rotation is substantial (12-39 km s-1), but systematically less than the rotation measured in Class I.5 (flat) and Class I sources from other studies in Ophiuchus.
82 - A. Frasca , E. Covino , L. Spezzi 2009
We performed an intensive photometric monitoring of the PMS stars falling in a field of about 10x10 arc-minutes in the vicinity of the Orion Nebula Cluster (ONC). Photometric data were collected between November 2006 and January 2007 with the REM tel escope in the VRIJHK bands. The largest number of observations is in the I band (about 2700 images) and in J and H bands (about 500 images in each filter). From the observed rotational modulation, induced by the presence of surface inhomogeneities, we derived the rotation periods for 16 stars and improved previous determinations for the other 13. The analysis of the spectral energy distributions and, for some stars, of high-resolution spectra provided us with the main stellar parameters (luminosity, effective temperature, mass, age, and vsini). We also report the serendipitous detection of two strong flares in two of these objects. In most cases, the light-curve amplitudes decrease progressively from the R to H band as expected for cool starspots, while in a few cases, they can only be modelled by the presence of hot spots, presumably ascribable to magnetospheric accretion. The application of our own spot model to the simultaneous light curves in different bands allowed us to deduce the spot parameters and particularly to disentangle the spot temperature and size effects on the observed light curves.
This paper describes the analysis of UVES and GIRAFFE spectra acquired by the Gaia-ESO Public Spectroscopic Survey in the fields of young clusters whose population includes pre-main sequence (PMS) stars. Both methods that have been extensively used i n the past and new ones developed in the contest of the Gaia-ESO survey enterprise are available and used. The internal precision of these quantities is estimated by inter-comparing the results obtained by such different methods, while the accuracy is estimated by comparison with independent external data, like effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. Specific strategies are implemented to deal with fast rotation, accretion signatures, chromospheric activity, and veiling. The analysis carried out on spectra acquired in young clusters fields during the first 18 months of observations, up to June 2013, is presented in preparation of the first release of advanced data products. Stellar parameters obtained with the higher resolution and larger wavelength coverage from UVES are reproduced with comparable accuracy and precision using the smaller wavelength range and lower resolution of the GIRAFFE setup adopted for young stars, which allows us to provide with confidence stellar parameters for the much larger GIRAFFE sample. Precisions are estimated to be $approx$ 120 K r.m.s. in Teff, $approx$0.3 dex r.m.s. in logg, and $approx$0.15 dex r.m.s. in [Fe/H], for both the UVES and GIRAFFE setups.
153 - D. Fedele 2009
We present initial result of a large spectroscopic survey aimed at measuring the timescale of mass accretion in young, pre-main-sequence stars in the spectral type range K0 - M5. Using multi-object spectroscopy with VIMOS at the VLT we identified the fraction of accreting stars in a number of young stellar clusters and associations of ages between 1 - 50 Myr. The fraction of accreting stars decreases from ~60% at 1.5 - 2 Myr to ~2% at 10 Myr. No accreting stars are found after 10 Myr at a sensitivity limit of $10^{-11}$ Msun yr-1. We compared the fraction of stars showing ongoing accretion (f_acc) to the fraction of stars with near-to-mid infrared excess (f_IRAC). In most cases we find f_acc < f_IRAC, i.e., mass accretion appears to cease (or drop below detectable level) earlier than the dust is dissipated in the inner disk. At 5 Myr, 95% of the stellar population has stopped accreting material at a rate of > 10^{-11} Msun yr-1, while ~20% of the stars show near-infrared excess emission. Assuming an exponential decay, we measure a mass accretion timescale (t_acc) of 2.3 Myr, compared to a near-to-mid infrared excess timescale (t_IRAC) of 2.9 Myr. Planet formation, and/or migration, in the inner disk might be a viable mechanism to halt further accretion onto the central star on such a short timescale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا