ترغب بنشر مسار تعليمي؟ اضغط هنا

The Crab Nebula as a Calibrator for wide-beam Cosmic Microwave Background polarization surveys

138   0   0.0 ( 0 )
 نشر من قبل Silvia Masi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the effect of polarized diffuse emission in the calibration of wide-beam mm-wave polarimeters, when using the Crab Nebula as a reference source for both polarized brightness and polarization angle. We show that, for CMB polarization experiments aiming at detecting B-mode in a scenario with a tensor to scalar ratio $r sim 0.001$, wide (a few degrees in diameter), precise ($sigma_Q$ , $sigma_U$ $sim$ 20 $mu$$K_{CMB}$ arcmin), high angular resolution ($< mathrm{FWHM}$) reference maps are needed to properly take into account the effects of diffuse polarized emission and avoid significant bias in the calibration.



قيم البحث

اقرأ أيضاً

133 - J. Aumont , L. Conversi , C. Thum 2009
CMB experiments aiming at a precise measurement of the CMB polarization, such as the Planck satellite, need a strong polarized absolute calibrator on the sky to accurately set the detectors polarization angle and the cross-polarization leakage. As th e most intense polarized source in the microwave sky at angular scales of few arcminutes, the Crab nebula will be used for this purpose. Our goal was to measure the Crab nebula polarization characteristics at 90 GHz with unprecedented precision. The observations were carried out with the IRAM 30m telescope employing the correlation polarimeter XPOL and using two orthogonally polarized receivers. We processed the Stokes I, Q, and U maps from our observations in order to compute the polarization angle and linear polarization fraction. The first is almost constant in the region of maximum emission in polarization with a mean value of alpha_Sky=152.1+/-0.3 deg in equatorial coordinates, and the second is found to reach a maximum of Pi=30% for the most polarized pixels. We find that a CMB experiment having a 5 arcmin circular beam will see a mean polarization angle of alpha_Sky=149.9+/-0.2 deg and a mean polarization fraction of Pi=8.8+/-0.2%.
Using only cosmic microwave background polarization data from the POLARBEAR experiment, we measure $B$-mode polarization delensing on subdegree scales at more than $5sigma$ significance. We achieve a 14% $B$-mode power variance reduction, the highest to date for internal delensing, and improve this result to 2% by applying for the first time an iterative maximum a posteriori delensing method. Our analysis demonstrates the capability of internal delensing as a means of improving constraints on inflationary models, paving the way for the optimal analysis of next-generation primordial $B$-mode experiments.
We compute the spectral distortions of the Cosmic Microwave Background (CMB) polarization induced by non-linear effects in the Compton interactions between CMB photons and cold intergalactic electrons. This signal is of the $y$-type and is dominated by contributions arising from the reionized era. We stress that it is not shadowed by the thermal SZ effect which has no equivalent for polarization. We decompose its angular dependence into $E$- and $B$-modes, and we calculate the corresponding power spectra, both exactly and using a suitable Limber approximation that allows a simpler numerical evaluation. We find that $B$-modes are of the same order of magnitude as $E$-modes. Both spectra are relatively flat, peaking around $ell=280$, and their overall amplitude is directly related to the optical depth to reionization. Moreover, we find this effect to be one order of magnitude larger than the non-linear kinetic Sunyaev-Zeldovich effect in galaxy clusters. Finally, we discuss how to improve the detectability of our signal by cross-correlating it with other quantities sourced by the flow of intergalactic electrons.
We quantify the level of polarization of the atmosphere due to Zeeman splitting of oxygen in the Earths magnetic field and compare it to the level of polarization expected from the polarization of the cosmic microwave background radiation. The analys is focuses on the effect at mid-latitudes and at large angular scales. We find that from stratospheric balloon borne platforms and for observations near 100 GHz the atmospheric linear and circular polarized intensities is about 10^{-12} and 100 x 10^{-9} K, respectively, making the atmosphere a negligible source of foreground. From the ground the linear and circular polarized intensities are about 10^{-9} and 100 x 10^{-6} K, making the atmosphere a potential source of foreground for the CMB E (B) mode signal if there is even a 1% (0.01%) conversion of circular to linear polarization in the instrument.
We report a measurement of the B-mode polarization power spectrum in the cosmic microwave background (CMB) using the POLARBEAR experiment in Chile. The faint B-mode polarization signature carries information about the Universes entire history of grav itational structure formation, and the cosmic inflation that may have occurred in the very early Universe. Our measurement covers the angular multipole range 500 < l < 2100 and is based on observations of an effective sky area of 25 square degrees with 3.5 arcmin resolution at 150 GHz. On these angular scales, gravitational lensing of the CMB by intervening structure in the Universe is expected to be the dominant source of B-mode polarization. Including both systematic and statistical uncertainties, the hypothesis of no B-mode polarization power from gravitational lensing is rejected at 97.1% confidence. The band powers are consistent with the standard cosmological model. Fitting a single lensing amplitude parameter A_BB to the measured band powers, A_BB = 1.12 +/- 0.61 (stat) +0.04/-0.12 (sys) +/- 0.07 (multi), where A_BB = 1 is the fiducial WMAP-9 LCDM value. In this expression, stat refers to the statistical uncertainty, sys to the systematic uncertainty associated with possible biases from the instrument and astrophysical foregrounds, and multi to the calibration uncertainties that have a multiplicative effect on the measured amplitude A_BB.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا