ﻻ يوجد ملخص باللغة العربية
Image copy detection is challenging and appealing topic in computer vision and signal processing. Recent advancements in multimedia have made distribution of image across the global easy and fast: that leads to many other issues such as forgery and image copy retrieval. Local keypoint descriptors such as SIFT are used to represent the images, and based on those descriptors matching, images are matched and retrieved. Features are quantized so that searching/matching may be made feasible for large databases at the cost of accuracy loss. In this paper, we propose binary feature that is obtained by quantizing the SIFT into binary, and rank list is re-examined to remove the false positives. Experiments on challenging dataset shows the gain in accuracy and time.
The aim of re-identification is to match objects in surveillance cameras with different viewpoints. Although ReID is developing at a considerably rapid pace, there is currently no processing method for the ReID task in multiple scenarios. However, su
The re-ranking approach leverages high-confidence retrieved samples to refine retrieval results, which have been widely adopted as a post-processing tool for image retrieval tasks. However, we notice one main flaw of re-ranking, i.e., high computatio
Nowadays, deep learning is widely applied to extract features for similarity computation in person re-identification (re-ID) and have achieved great success. However, due to the non-overlapping between training and testing IDs, the difference between
Person Re-identification (re-id) faces two major challenges: the lack of cross-view paired training data and learning discriminative identity-sensitive and view-invariant features in the presence of large pose variations. In this work, we address bot
Single image dehazing is a challenging ill-posed problem due to the severe information degeneration. However, existing deep learning based dehazing methods only adopt clear images as positive samples to guide the training of dehazing network while ne