ﻻ يوجد ملخص باللغة العربية
The aim of re-identification is to match objects in surveillance cameras with different viewpoints. Although ReID is developing at a considerably rapid pace, there is currently no processing method for the ReID task in multiple scenarios. However, such processing method is required in real life scenarios, such as those involving security. In the present study, a new ReID scenario was explored, which differs in terms of perspective, background, and pose(walking or cycling). Obviously, ordinary ReID processing methods cannot effectively handle such a scenario, with the introduction of image datasets being the optimal solution, in addition to being considerably expensive. To solve the aforementioned problem, a simple and effective method to generate images in several new scenarios was proposed, which is names the Copy and Paste method based on Pose(CPP). The CPP method is based on key point detection, using copy as paste, to composite a new semantic image dataset in two different semantic image datasets. As an example, pedestrains and bicycles can be used to generate several images that show the same person riding on different bicycles. The CPP method is suitable for ReID tasks in new scenarios and outperforms the traditional methods when applied to the original datasets in original ReID tasks. To be specific, the CPP method can also perform better in terms of generalization for third-party public dataset. The Code and datasets composited by the CPP method will be available in the future.
Person Re-identification (re-id) faces two major challenges: the lack of cross-view paired training data and learning discriminative identity-sensitive and view-invariant features in the presence of large pose variations. In this work, we address bot
We present a novel deep learning based algorithm for video inpainting. Video inpainting is a process of completing corrupted or missing regions in videos. Video inpainting has additional challenges compared to image inpainting due to the extra tempor
Building instance segmentation models that are data-efficient and can handle rare object categories is an important challenge in computer vision. Leveraging data augmentations is a promising direction towards addressing this challenge. Here, we perfo
Many optimization methods for generating black-box adversarial examples have been proposed, but the aspect of initializing said optimizers has not been considered in much detail. We show that the choice of starting points is indeed crucial, and that
Image copy detection is challenging and appealing topic in computer vision and signal processing. Recent advancements in multimedia have made distribution of image across the global easy and fast: that leads to many other issues such as forgery and i