ﻻ يوجد ملخص باللغة العربية
Nowadays, deep learning is widely applied to extract features for similarity computation in person re-identification (re-ID) and have achieved great success. However, due to the non-overlapping between training and testing IDs, the difference between the data used for model training and the testing data makes the performance of learned feature degraded during testing. Hence, re-ranking is proposed to mitigate this issue and various algorithms have been developed. However, most of existing re-ranking methods focus on replacing the Euclidean distance with sophisticated distance metrics, which are not friendly to downstream tasks and hard to be used for fast retrieval of massive data in real applications. In this work, we propose a graph-based re-ranking method to improve learned features while still keeping Euclidean distance as the similarity metric. Inspired by graph convolution networks, we develop an operator to propagate features over an appropriate graph. Since graph is the essential key for the propagation, two important criteria are considered for designing the graph, and three different graphs are explored accordingly. Furthermore, a simple yet effective method is proposed to generate a profile vector for each tracklet in videos, which helps extend our method to video re-ID. Extensive experiments on three benchmark data sets, e.g., Market-1501, Duke, and MARS, demonstrate the effectiveness of our proposed approach.
Due to the imperfect person detection results and posture changes, temporal appearance misalignment is unavoidable in video-based person re-identification (ReID). In this case, 3D convolution may destroy the appearance representation of person video
Most state-of-the-art person re-identification (re-id) methods depend on supervised model learning with a large set of cross-view identity labelled training data. Even worse, such trained models are limited to only the same-domain deployment with sig
Person re-identification (re-id) suffers from a serious occlusion problem when applied to crowded public places. In this paper, we propose to retrieve a full-body person image by using a person image with occlusions. This differs significantly from t
Fast person re-identification (ReID) aims to search person images quickly and accurately. The main idea of recent fast ReID methods is the hashing algorithm, which learns compact binary codes and performs fast Hamming distance and counting sort. Howe
Recent years have witnessed a substantial increase in the deep learning (DL)architectures proposed for visual recognition tasks like person re-identification,where individuals must be recognized over multiple distributed cameras. Althoughthese archit