ترغب بنشر مسار تعليمي؟ اضغط هنا

Unit Selection with Causal Diagram

342   0   0.0 ( 0 )
 نشر من قبل Ang Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The unit selection problem aims to identify a set of individuals who are most likely to exhibit a desired mode of behavior, for example, selecting individuals who would respond one way if encouraged and a different way if not encouraged. Using a combination of experimental and observational data, Li and Pearl derived tight bounds on the benefit function - the payoff/cost associated with selecting an individual with given characteristics. This paper shows that these bounds can be narrowed significantly (enough to change decisions) when structural information is available in the form of a causal model. We address the problem of estimating the benefit function using observational and experimental data when specific graphical criteria are assumed to hold.



قيم البحث

اقرأ أيضاً

We consider the problem of learning causal networks with interventions, when each intervention is limited in size under Pearls Structural Equation Model with independent errors (SEM-IE). The objective is to minimize the number of experiments to disco ver the causal directions of all the edges in a causal graph. Previous work has focused on the use of separating systems for complete graphs for this task. We prove that any deterministic adaptive algorithm needs to be a separating system in order to learn complete graphs in the worst case. In addition, we present a novel separating system construction, whose size is close to optimal and is arguably simpler than previous work in combinatorics. We also develop a novel information theoretic lower bound on the number of interventions that applies in full generality, including for randomized adaptive learning algorithms. For general chordal graphs, we derive worst case lower bounds on the number of interventions. Building on observations about induced trees, we give a new deterministic adaptive algorithm to learn directions on any chordal skeleton completely. In the worst case, our achievable scheme is an $alpha$-approximation algorithm where $alpha$ is the independence number of the graph. We also show that there exist graph classes for which the sufficient number of experiments is close to the lower bound. In the other extreme, there are graph classes for which the required number of experiments is multiplicatively $alpha$ away from our lower bound. In simulations, our algorithm almost always performs very close to the lower bound, while the approach based on separating systems for complete graphs is significantly worse for random chordal graphs.
81 - Debo Cheng 2020
This paper discusses the problem of causal query in observational data with hidden variables, with the aim of seeking the change of an outcome when manipulating a variable while given a set of plausible confounding variables which affect the manipula ted variable and the outcome. Such an experiment on data to estimate the causal effect of the manipulated variable is useful for validating an experiment design using historical data or for exploring confounders when studying a new relationship. However, existing data-driven methods for causal effect estimation face some major challenges, including poor scalability with high dimensional data, low estimation accuracy due to heuristics used by the global causal structure learning algorithms, and the assumption of causal sufficiency when hidden variables are inevitable in data. In this paper, we develop a theorem for using local search to find a superset of the adjustment (or confounding) variables for causal effect estimation from observational data under a realistic pretreatment assumption. The theorem ensures that the unbiased estimate of causal effect is included in the set of causal effects estimated by the superset of adjustment variables. Based on the developed theorem, we propose a data-driven algorithm for causal query. Experiments show that the proposed algorithm is faster and produces better causal effect estimation than an existing data-driven causal effect estimation method with hidden variables. The causal effects estimated by the proposed algorithm are as accurate as those by the state-of-the-art methods using domain knowledge.
We consider the problem of identifying the causal direction between two discrete random variables using observational data. Unlike previous work, we keep the most general functional model but make an assumption on the unobserved exogenous variable: I nspired by Occams razor, we assume that the exogenous variable is simple in the true causal direction. We quantify simplicity using Renyi entropy. Our main result is that, under natural assumptions, if the exogenous variable has low $H_0$ entropy (cardinality) in the true direction, it must have high $H_0$ entropy in the wrong direction. We establish several algorithmic hardness results about estimating the minimum entropy exogenous variable. We show that the problem of finding the exogenous variable with minimum entropy is equivalent to the problem of finding minimum joint entropy given $n$ marginal distributions, also known as minimum entropy coupling problem. We propose an efficient greedy algorithm for the minimum entropy coupling problem, that for $n=2$ provably finds a local optimum. This gives a greedy algorithm for finding the exogenous variable with minimum $H_1$ (Shannon Entropy). Our greedy entropy-based causal inference algorithm has similar performance to the state of the art additive noise models in real datasets. One advantage of our approach is that we make no use of the values of random variables but only their distributions. Our method can therefore be used for causal inference for both ordinal and also categorical data, unlike additive noise models.
One of the most common mistakes made when performing data analysis is attributing causal meaning to regression coefficients. Formally, a causal effect can only be computed if it is identifiable from a combination of observational data and structural knowledge about the domain under investigation (Pearl, 2000, Ch. 5). Building on the literature of instrumental variables (IVs), a plethora of methods has been developed to identify causal effects in linear systems. Almost invariably, however, the most powerful such methods rely on exponential-time procedures. In this paper, we investigate graphical conditions to allow efficient identification in arbitrary linear structural causal models (SCMs). In particular, we develop a method to efficiently find unconditioned instrumental subsets, which are generalizations of IVs that can be used to tame the complexity of many canonical algorithms found in the literature. Further, we prove that determining whether an effect can be identified with TSID (Weihs et al., 2017), a method more powerful than unconditioned instrumental sets and other efficient identification algorithms, is NP-Complete. Finally, building on the idea of flow constraints, we introduce a new and efficient criterion called Instrumental Cutsets (IC), which is able to solve for parameters missed by all other existing polynomial-time algorithms.
The ability to perform causal and counterfactual reasoning are central properties of human intelligence. Decision-making systems that can perform these types of reasoning have the potential to be more generalizable and interpretable. Simulations have helped advance the state-of-the-art in this domain, by providing the ability to systematically vary parameters (e.g., confounders) and generate examples of the outcomes in the case of counterfactual scenarios. However, simulating complex temporal causal events in multi-agent scenarios, such as those that exist in driving and vehicle navigation, is challenging. To help address this, we present a high-fidelity simulation environment that is designed for developing algorithms for causal discovery and counterfactual reasoning in the safety-critical context. A core component of our work is to introduce textit{agency}, such that it is simple to define and create complex scenarios using high-level definitions. The vehicles then operate with agency to complete these objectives, meaning low-level behaviors need only be controlled if necessary. We perform experiments with three state-of-the-art methods to create baselines and highlight the affordances of this environment. Finally, we highlight challenges and opportunities for future work.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا