ﻻ يوجد ملخص باللغة العربية
Recently, $k$NN-MT has shown the promising capability of directly incorporating the pre-trained neural machine translation (NMT) model with domain-specific token-level $k$-nearest-neighbor ($k$NN) retrieval to achieve domain adaptation without retraining. Despite being conceptually attractive, it heavily relies on high-quality in-domain parallel corpora, limiting its capability on unsupervised domain adaptation, where in-domain parallel corpora are scarce or nonexistent. In this paper, we propose a novel framework that directly uses in-domain monolingual sentences in the target language to construct an effective datastore for $k$-nearest-neighbor retrieval. To this end, we first introduce an autoencoder task based on the target language, and then insert lightweight adapters into the original NMT model to map the token-level representation of this task to the ideal representation of translation task. Experiments on multi-domain datasets demonstrate that our proposed approach significantly improves the translation accuracy with target-side monolingual data, while achieving comparable performance with back-translation.
Domain adaptation has been well-studied in supervised neural machine translation (SNMT). However, it has not been well-studied for unsupervised neural machine translation (UNMT), although UNMT has recently achieved remarkable results in several domai
Neural network methods exhibit strong performance only in a few resource-rich domains. Practitioners, therefore, employ domain adaptation from resource-rich domains that are, in most cases, distant from the target domain. Domain adaptation between di
This paper considers the unsupervised domain adaptation problem for neural machine translation (NMT), where we assume the access to only monolingual text in either the source or target language in the new domain. We propose a cross-lingual data selec
Meta-learning has been sufficiently validated to be beneficial for low-resource neural machine translation (NMT). However, we find that meta-trained NMT fails to improve the translation performance of the domain unseen at the meta-training stage. In
Neural machine translation often adopts the fine-tuning approach to adapt to specific domains. However, nonrestricted fine-tuning can easily degrade on the general domain and over-fit to the target domain. To mitigate the issue, we propose Prune-Tune