ﻻ يوجد ملخص باللغة العربية
Neural machine translation often adopts the fine-tuning approach to adapt to specific domains. However, nonrestricted fine-tuning can easily degrade on the general domain and over-fit to the target domain. To mitigate the issue, we propose Prune-Tune, a novel domain adaptation method via gradual pruning. It learns tiny domain-specific sub-networks during fine-tuning on new domains. Prune-Tune alleviates the over-fitting and the degradation problem without model modification. Furthermore, Prune-Tune is able to sequentially learn a single network with multiple disjoint domain-specific sub-networks for multiple domains. Empirical experiment results show that Prune-Tune outperforms several strong competitors in the target domain test set without sacrificing the quality on the general domain in both single and multi-domain settings. The source code and data are available at https://github.com/ohlionel/Prune-Tune.
Recently, $k$NN-MT has shown the promising capability of directly incorporating the pre-trained neural machine translation (NMT) model with domain-specific token-level $k$-nearest-neighbor ($k$NN) retrieval to achieve domain adaptation without retrai
Recent studies on the analysis of the multilingual representations focus on identifying whether there is an emergence of language-independent representations, or whether a multilingual model partitions its weights among different languages. While mos
Prior work has proved that Translation memory (TM) can boost the performance of Neural Machine Translation (NMT). In contrast to existing work that uses bilingual corpus as TM and employs source-side similarity search for memory retrieval, we propose
This paper introduces WeChat AIs participation in WMT 2021 shared news translation task on English->Chinese, English->Japanese, Japanese->English and English->German. Our systems are based on the Transformer (Vaswani et al., 2017) with several novel
We participate in the WMT 2020 shared news translation task on Chinese to English. Our system is based on the Transformer (Vaswani et al., 2017a) with effective variants and the DTMT (Meng and Zhang, 2019) architecture. In our experiments, we employ