ﻻ يوجد ملخص باللغة العربية
Neural network methods exhibit strong performance only in a few resource-rich domains. Practitioners, therefore, employ domain adaptation from resource-rich domains that are, in most cases, distant from the target domain. Domain adaptation between distant domains (e.g., movie subtitles and research papers), however, cannot be performed effectively due to mismatches in vocabulary; it will encounter many domain-specific words (e.g., angstrom) and words whose meanings shift across domains(e.g., conductor). In this study, aiming to solve these vocabulary mismatches in domain adaptation for neural machine translation (NMT), we propose vocabulary adaptation, a simple method for effective fine-tuning that adapts embedding layers in a given pre-trained NMT model to the target domain. Prior to fine-tuning, our method replaces the embedding layers of the NMT model by projecting general word embeddings induced from monolingual data in a target domain onto a source-domain embedding space. Experimental results indicate that our method improves the performance of conventional fine-tuning by 3.86 and 3.28 BLEU points in En-Ja and De-En translation, respectively.
Recently, $k$NN-MT has shown the promising capability of directly incorporating the pre-trained neural machine translation (NMT) model with domain-specific token-level $k$-nearest-neighbor ($k$NN) retrieval to achieve domain adaptation without retrai
Meta-learning has been sufficiently validated to be beneficial for low-resource neural machine translation (NMT). However, we find that meta-trained NMT fails to improve the translation performance of the domain unseen at the meta-training stage. In
Domain adaptation has been well-studied in supervised neural machine translation (SNMT). However, it has not been well-studied for unsupervised neural machine translation (UNMT), although UNMT has recently achieved remarkable results in several domai
One challenge of machine translation is how to quickly adapt to unseen domains in face of surging events like COVID-19, in which case timely and accurate translation of in-domain information into multiple languages is critical but little parallel dat
This paper considers the unsupervised domain adaptation problem for neural machine translation (NMT), where we assume the access to only monolingual text in either the source or target language in the new domain. We propose a cross-lingual data selec