ﻻ يوجد ملخص باللغة العربية
Current-induced spin torques provide efficient data writing approaches for magnetic memories. Recently, the spin splitting torque (SST) was theoretically predicted (R. Gonzalez-Hernandez et al. Phys. Rev. Lett. 126, 127701 (2021)), which combines advantages of conventional spin transfer torque (STT) and spin-orbit torque (SOT) as well as enables controllable spin polarization. Here we provide the experimental evidence of SST in collinear antiferromagnet RuO2 films. The spin current direction is found to be correlated to the crystal orientation of RuO2 and the spin polarization direction is dependent on (parallel to) the Neel vector. These features are quite characteristic for the predicted SST. Our finding not only present a new member for the spin torques besides traditional STT and SOT, but also proposes a promising spin source RuO2 for spintronics.
We report measurements demonstrating that when the Neel vector of the collinear antiferromagnet RuO2 is appropriately canted relative to the sample plane, the antiferromagnet generates a substantial out of plane damping-like torque. The measurements
Time-reversal symmetry breaking is the basic physics concept underpinning many magnetic topological phenomena such as the anomalous Hall effect (AHE) and its quantized variant. The AHE has been primarily accompanied by a ferromagnetic dipole moment,
Synthetic antiferromagnets (SAF) have been proposed to replace ferromagnets in magnetic memory devices to reduce the stray field, increase the storage density and improve the thermal stability. Here we investigate the spin-orbit torque in a perpendic
Antiferromagnets with zero net magnetic moment, strong anti-interference and ultrafast switching speed have potential competitiveness in high-density information storage. Body centered tetragonal antiferromagnet Mn2Au with opposite spin sub-lattices
Spin polarized carriers electrically injected into a magnet from an external polarizer can exert a spin transfer torque (STT) on the magnetization. The phe- nomenon belongs to the area of spintronics research focusing on manipulating magnetic moments