ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental observation of the optical spin-orbit torque

438   0   0.0 ( 0 )
 نشر من قبل Tomas Jungwirth
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin polarized carriers electrically injected into a magnet from an external polarizer can exert a spin transfer torque (STT) on the magnetization. The phe- nomenon belongs to the area of spintronics research focusing on manipulating magnetic moments by electric fields and is the basis of the emerging technologies for scalable magnetoresistive random access memories. In our previous work we have reported experimental observation of the optical counterpart of STT in which a circularly polarized pump laser pulse acts as the external polarizer, allowing to study and utilize the phenomenon on several orders of magnitude shorter timescales than in the electric current induced STT. Recently it has been theoretically proposed and experimentally demonstrated that in the absence of an external polarizer, carriers in a magnet under applied electric field can develop a non-equilibrium spin polarization due to the relativistic spin-orbit coupling, resulting in a current induced spin-orbit torque (SOT) acting on the magnetization. In this paper we report the observation of the optical counterpart of SOT. At picosecond time-scales, we detect excitations of magnetization of a ferromagnetic semiconductor (Ga,Mn)As which are independent of the polarization of the pump laser pulses and are induced by non-equilibrium spin-orbit coupled photo-holes.



قيم البحث

اقرأ أيضاً

The spin transfer torque is a phenomenon in which angular momentum of a spin polarized electrical current entering a ferromagnet is transferred to the magnetization. The effect has opened a new research field of electrically driven magnetization dyna mics in magnetic nanostructures and plays an important role in the development of a new generation of memory devices and tunable oscillators. Optical excitations of magnetic systems by laser pulses have been a separate research field whose aim is to explore magnetization dynamics at short time scales and enable ultrafast spintronic devices. We report the experimental observation of the optical spin transfer torque, predicted theoretically several years ago building the bridge between these two fields of spintronics research. In a pump-and-probe optical experiment we measure coherent spin precession in a (Ga,Mn)As ferromagnetic semiconductor excited by circularly polarized laser pulses. During the pump pulse, the spin angular momentum of photo-carriers generated by the absorbed light is transferred to the collective magnetization of the ferromagnet. We interpret the observed optical spin transfer torque and the magnetization precession it triggers on a quantitative microscopic level. Bringing the spin transfer physics into optics introduces a fundamentally distinct mechanism from the previously reported thermal and non-thermal laser excitations of magnets. Bringing optics into the field of spin transfer torques decreases by several orders of magnitude the timescales at which these phenomena are explored and utilized.
An electric current in the presence of spin-orbit coupling can generate a spin accumulation that exerts torques on a nearby magnetization. We demonstrate that, even in the absence of materials with strong bulk spin-orbit coupling, a torque can arise solely due to interfacial spin-orbit coupling, namely Rashba-Eldestein effects at metal/insulator interfaces. In magnetically soft NiFe sandwiched between a weak spin-orbit metal (Ti) and insulator (Al$_2$O$_3$), this torque appears as an effective field, which is significantly larger than the Oersted field and sensitive to insertion of an additional layer between NiFe and Al$_2$O$_3$. Our findings point to new routes for tuning spin-orbit torques by engineering interfacial electric dipoles.
Strong damping-like spin-orbit torque ({tau}DL) has great potential for enabling ultrafast energy-efficient magnetic memories, oscillators, and logic. So far, the reported {tau}DL exerted on a thin-film magnet must result from an externally generated spin current or from an internal non-equilibrium spin polarization in noncentrosymmetric GaMnAs single crystals. Here, we for the first time demonstrate a very strong, unexpected {tau}DL from current flow within ferromagnetic single layers of chemically disordered, face-centered-cubic CoPt. We establish that the novel {tau}DL is a bulk effect, with the strength per unit current density increasing monotonically with the CoPt thickness, and is insensitive to the presence or absence of spin sinks at the CoPt surfaces. This {tau}DL most likely arises from a net transverse spin polarization associated with a strong spin Hall effect (SHE), while there is no detectable long-range asymmetry in the material. These results broaden the scope of spin-orbitronics and provide a novel avenue for developing single-layer-based spin-torque memory, oscillator, and logic technologies.
Spin currents can modify the magnetic state of ferromagnetic ultrathin films through spin-orbit torque. They may be generated by means of spin-orbit interaction by either bulk or interfacial phenomena. Electrical transport measurements reveal a six-f old increase of the spin-orbit torque accompanied by a drastic reduction of the spin Hall magnetoresistance upon the introduction of a Cu interlayer in a Pt/Cu/Co/Pt structure with perpendicular magnetic anisotropy. We analyze the dependence of the spin Hall magnetoresistance with the thickness of the interlayer in the frame of a drift diffusion model that provides information on the expected spin currents and spin accumulations in the system. The results demonstrate that the major responsible of both effects is spin memory loss at the interface. The enhancement of the spin-orbit torque when introducing an interlayer opens the possibility to design more effient spintronic devices based on materials that are cheap and abundant such as copper.
The magnitude of spin-orbit torque (SOT), exerted to a ferromagnet (FM) from an adjacent heavy metal (HM), strongly depends on the amount of spin currents absorbed in the FM. We exploit the large spin absorption at the Ru interface to manipulate the SOTs in HM/FM/Ru multilayers. While the FM thickness is smaller than its spin dephasing length of 1.2 nm, the top Ru layer largely boosts the absorption of spin currents into the FM layer and substantially enhances the strength of SOT acting on the FM. Spin-pumping experiments induced by ferromagnetic resonance support our conclusions that the observed increase in the SOT efficiency can be attributed to an enhancement of the spin-current absorption. A theoretical model that considers both reflected and transmitted mixing conductances at the two interfaces of FM is developed to explain the results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا