ﻻ يوجد ملخص باللغة العربية
Antiferromagnets with zero net magnetic moment, strong anti-interference and ultrafast switching speed have potential competitiveness in high-density information storage. Body centered tetragonal antiferromagnet Mn2Au with opposite spin sub-lattices is a unique metallic material for Neel-order spin-orbit torque (SOT) switching. Here we investigate the SOT switching in quasi-epitaxial (103), (101) and (204) Mn2Au films prepared by a simple magnetron sputtering method. We demonstrate current induced antiferromagnetic moment switching in all the prepared Mn2Au films by a short current pulse at room temperature, whereas different orientated films exhibit distinguished switching characters. A direction-independent reversible switching is attained in Mn2Au (103) films due to negligible magnetocrystalline anisotropy energy, while for Mn2Au (101) and (204) films, the switching is invertible with the current applied along the in-plane easy axis and its vertical axis, but becomes attenuated seriously during initially switching circles when the current is applied along hard axis, because of the existence of magnetocrystalline anisotropy energy. Besides the fundamental significance, the strong orientation dependent SOT switching, which was not realized irrespective of ferromagnet and antiferromagnet, provides versatility for spintronics.
Synthetic antiferromagnets (SAF) have been proposed to replace ferromagnets in magnetic memory devices to reduce the stray field, increase the storage density and improve the thermal stability. Here we investigate the spin-orbit torque in a perpendic
The spin-orbit torque induced by a topological insulator (TI) is theoretically examined for spin wave generation in a neighboring antiferromagnetic thin film. The investigation is based on the micromagnetic simulation of N{e}el vector dynamics and th
We suggest coherent switching of canted antiferromagnetic (AFM) spins using spin-orbit torque (SOT) in small magnet. The magnetic system of orthoferrite features biaxial easy anisotropy and the Dzyaloshinskii Moriya interaction, which is perpendicula
An electric current in the presence of spin-orbit coupling can generate a spin accumulation that exerts torques on a nearby magnetization. We demonstrate that, even in the absence of materials with strong bulk spin-orbit coupling, a torque can arise
Materials that crystalize in diamond-related lattices, with Si and GaAs as their prime examples, are at the foundation of modern electronics. Simultaneoulsy, the two atomic sites in the unit cell of these crystals form inversion partners which gives