ترغب بنشر مسار تعليمي؟ اضغط هنا

Computation Rate Maximum for Mobile Terminals in UAV-assisted Wireless Powered MEC Networks with Fairness Constraint

112   0   0.0 ( 0 )
 نشر من قبل Xiaoyi Zhou
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper investigates an unmanned aerial vehicle (UAV)-assisted wireless powered mobile-edge computing (MEC) system, where the UAV powers the mobile terminals by wireless power transfer (WPT) and provides computation service for them. We aim to maximize the computation rate of terminals while ensuring fairness among them. Considering the random trajectories of mobile terminals, we propose a soft actor-critic (SAC)-based UAV trajectory planning and resource allocation (SAC-TR) algorithm, which combines off-policy and maximum entropy reinforcement learning to promote the convergence of the algorithm. We design the reward as a heterogeneous function of computation rate, fairness, and reaching of destination. Simulation results show that SAC-TR can quickly adapt to varying network environments and outperform representative benchmarks in a variety of situations.



قيم البحث

اقرأ أيضاً

97 - Haixia Peng , Xuemin Shen 2020
In this paper, we investigate joint vehicle association and multi-dimensional resource management in a vehicular network assisted by multi-access edge computing (MEC) and unmanned aerial vehicle (UAV). To efficiently manage the available spectrum, co mputing, and caching resources for the MEC-mounted base station and UAVs, a resource optimization problem is formulated and carried out at a central controller. Considering the overlong solving time of the formulated problem and the sensitive delay requirements of vehicular applications, we transform the optimization problem using reinforcement learning and then design a deep deterministic policy gradient (DDPG)-based solution. Through training the DDPG-based resource management model offline, optimal vehicle association and resource allocation decisions can be obtained rapidly. Simulation results demonstrate that the DDPG-based resource management scheme can converge within 200 episodes and achieve higher delay/quality-of-service satisfaction ratios than the random scheme.
The combination of 5G and Multi-access Edge Computing (MEC) can significantly reduce application delay by lowering transmission delay and bringing computational capabilities closer to the end user. Therefore, 5G MEC could enable excellent user experi ence in applications like Mobile Augmented Reality (MAR), which are computation-intensive, and delay and jitter-sensitive. However, existing 5G handoff algorithms often do not consider the computational load of MEC servers, are too complex for real-time execution, or do not integrate easily with the standard protocol stack. Thus they can impair the performance of 5G MEC. To address this gap, we propose Comp-HO, a handoff algorithm that finds a local solution to the joint problem of optimizing signal strength and computational load. Additionally, Comp-HO can easily be integrated into current LTE and 5G base stations thanks to its simplicity and standard-friendly deployability. Specifically, we evaluate Comp-HO through a custom NS-3 simulator which we calibrate via MAR prototype measurements from a real-world 5G testbed. We simulate both Comp-HO and several classic handoff algorithms. The results show that, even without a global optimum, the proposed algorithm still significantly reduces the number of large delays, caused by congestion at MECs, at the expense of a small increase in transmission delay.
116 - Qiong Wu , Ziyang Wan , Qiang Fan 2021
Platooning strategy is an important part of autonomous driving technology. Due to the limited resource of autonomous vehicles in platoons, mobile edge computing (MEC) is usually used to assist vehicles in platoons to obtain useful information, increa sing its safety. Specifically, vehicles usually adopt the IEEE 802.11 distributed coordination function (DCF) mechanism to transmit large amount of data to the base station (BS) through vehicle-to-infrastructure (V2I) communications, where the useful information can be extracted by the edge server connected to the BS and then sent back to the vehicles to make correct decisions in time. However, vehicles may be moving on different lanes with different velocities, which incurs the unfair access due to the characteristics of platoons, i.e., vehicles on different lanes transmit different amount of data to the BS when they pass through the coverage of the BS, which also results in the different amount of useful information received by various vehicles. Moreover, age of information (AoI) is an important performance metric to measure the freshness of the data. Large average age of data implies not receiving the useful information in time. It is necessary to design an access scheme to jointly optimize the fairness and data freshness. In this paper, we formulate a joint optimization problem in the MEC-assisted V2I networks and present a multi-objective optimization scheme to solve the problem through adjusting the minimum contention window under the IEEE 802.11 DCF mode according to the velocities of vehicles. The effectiveness of the scheme has been demonstrated by simulation.
The integration of Mobile Edge Computing (MEC) and Wireless Power Transfer (WPT), which is usually referred to as Wireless Powered Mobile Edge Computing (WP-MEC), has been recognized as a promising technique to enhance the lifetime and computation ca pacity of wireless devices (WDs). Compared to the conventional battery-powered MEC networks, WP-MEC brings new challenges to the computation scheduling problem because we have to jointly optimize the resource allocation in WPT and computation offloading. In this paper, we consider the energy minimization problem for WP-MEC networks with multiple WDs and multiple access points. We design an online algorithm by transforming the original problem into a series of deterministic optimization problems based on the Lyapunov optimization theory. To reduce the time complexity of our algorithm, the optimization problem is relaxed and decomposed into several independent subproblems. After solving each subproblem, we adjust the computed values of variables to obtain a feasible solution. Extensive simulations are conducted to validate the performance of the proposed algorithm.
In this paper, we introduce a backscatter assisted wirelessly powered mobile edge computing (MEC) network, where each edge user (EU) can offload task bits to the MEC server via hybrid harvest-then-transmit (HTT) and backscatter communications. In par ticular, considering a practical non-linear energy harvesting (EH) model and a partial offloading scheme at each EU, we propose a scheme to maximize the weighted sum computation bits of all the EUs by jointly optimizing the backscatter reflection coefficient and time, active transmission power and time, local computing frequency and execution time of each EU. By introducing a series of auxiliary variables and using the properties of the non-linear EH model, we transform the original non-convex problem into a convex one and derive closedform expressions for parts of the optimal solutions. Simulation results demonstrate the advantage of the proposed scheme over benchmark schemes in terms of weighted sum computation bits.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا