ﻻ يوجد ملخص باللغة العربية
In this paper, we introduce a backscatter assisted wirelessly powered mobile edge computing (MEC) network, where each edge user (EU) can offload task bits to the MEC server via hybrid harvest-then-transmit (HTT) and backscatter communications. In particular, considering a practical non-linear energy harvesting (EH) model and a partial offloading scheme at each EU, we propose a scheme to maximize the weighted sum computation bits of all the EUs by jointly optimizing the backscatter reflection coefficient and time, active transmission power and time, local computing frequency and execution time of each EU. By introducing a series of auxiliary variables and using the properties of the non-linear EH model, we transform the original non-convex problem into a convex one and derive closedform expressions for parts of the optimal solutions. Simulation results demonstrate the advantage of the proposed scheme over benchmark schemes in terms of weighted sum computation bits.
The high reflect beamforming gain of the intelligent reflecting surface (IRS) makes it appealing not only for wireless information transmission but also for wireless power transfer. In this letter, we consider an IRS-assisted wireless powered communi
We consider an ambient backscatter communication (AmBC) system aided by an intelligent reflecting surface (IRS). The optimization of the IRS to assist AmBC is extremely difficult when there is no prior channel knowledge, for which no design solutions
An intelligent reflecting surface (IRS)-aided wireless powered mobile edge computing (WP-MEC) system is conceived, where each devices computational task can be divided into two parts for local computing and offloading to mobile edge computing (MEC) s
Multi-access edge computing (MEC) and non-orthogonal multiple access (NOMA) have been regarded as promising technologies to improve computation capability and offloading efficiency of the mobile devices in the sixth generation (6G) mobile system. Thi
Bistatic backscatter communication (BackCom) allows passive tags to transmit over extended ranges, but at the cost of having carrier emitters either transmitting at high powers or being deployed very close to tags. In this paper, we examine how the p