ﻻ يوجد ملخص باللغة العربية
Mixed-membership (MM) models such as Latent Dirichlet Allocation (LDA) have been applied to microbiome compositional data to identify latent subcommunities of microbial species. However, microbiome compositional data, especially those collected from the gut, typically display substantial cross-sample heterogeneities in the subcommunity composition which current MM methods do not account for. To address this limitation, we incorporate the logistic-tree normal (LTN) model -- using the phylogenetic tree structure -- into the LDA model to form a new MM model. This model allows variation in the composition of each subcommunity around some ``centroid composition. Incorporation of auxiliary Polya-Gamma variables enables a computationally efficient collapsed blocked Gibbs sampler to carry out Bayesian inference under this model. We compare the new model and LDA and show that in the presence of large cross-sample heterogeneity, under the LDA model the resulting inference can be extremely sensitive to the specification of the total number of subcommunities as it does not account for cross-sample heterogeneity. As such, the popular strategy in other applications of MM models of overspecifying the number of subcommunities -- and hoping that some meaningful subcommunities will emerge among artificial ones -- can lead to highly misleading conclusions in the microbiome context. In contrast, by accounting for such heterogeneity, our MM model restores the robustness of the inference in the specification of the number of subcommunities and again allows meaningful subcommunities to be identified under this strategy.
Modern microbiome compositional data are often high-dimensional and exhibit complex dependency among microbial taxa. However, existing approaches to analyzing microbiome compositional data either do not adequately account for the complex dependency o
Assume we have potential causes $zin Z$, which produce events $w$ with known probabilities $beta(w|z)$. We observe $w_1,w_2,...,w_n$, what can we say about the distribution of the causes? A Bayesian estimate will assume a prior on distributions on $Z
Latent tree models are graphical models defined on trees, in which only a subset of variables is observed. They were first discussed by Judea Pearl as tree-decomposable distributions to generalise star-decomposable distributions such as the latent cl
Recent work has explored transforming data sets into smaller, approximate summaries in order to scale Bayesian inference. We examine a related problem in which the parameters of a Bayesian model are very large and expensive to store in memory, and pr
We provide an end-to-end differentially private spectral algorithm for learning LDA, based on matrix/tensor decompositions, and establish theoretical guarantees on utility/consistency of the estimated model parameters. The spectral algorithm consists