ترغب بنشر مسار تعليمي؟ اضغط هنا

Sketching for Latent Dirichlet-Categorical Models

171   0   0.0 ( 0 )
 نشر من قبل Joseph Tassarotti
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent work has explored transforming data sets into smaller, approximate summaries in order to scale Bayesian inference. We examine a related problem in which the parameters of a Bayesian model are very large and expensive to store in memory, and propose more compact representations of parameter values that can be used during inference. We focus on a class of graphical models that we refer to as latent Dirichlet-Categorical models, and show how a combination of two sketching algorithms known as count-min sketch and approximate counters provide an efficient representation for them. We show that this sketch combination -- which, despite having been used before in NLP applications, has not been previously analyzed -- enjoys desirable properties. We prove that for this class of models, when the sketches are used during Markov Chain Monte Carlo inference, the equilibrium of sketched MCMC converges to that of the exact chain as sketch parameters are tuned to reduce the error rate.



قيم البحث

اقرأ أيضاً

101 - Nicolas Keriven 2016
Learning parameters from voluminous data can be prohibitive in terms of memory and computational requirements. We propose a compressive learning framework where we estimate model parameters from a sketch of the training data. This sketch is a collect ion of generalized moments of the underlying probability distribution of the data. It can be computed in a single pass on the training set, and is easily computable on streams or distributed datasets. The proposed framework shares similarities with compressive sensing, which aims at drastically reducing the dimension of high-dimensional signals while preserving the ability to reconstruct them. To perform the estimation task, we derive an iterative algorithm analogous to sparse reconstruction algorithms in the context of linear inverse problems. We exemplify our framework with the compressive estimation of a Gaussian Mixture Model (GMM), providing heuristics on the choice of the sketching procedure and theoretical guarantees of reconstruction. We experimentally show on synthetic data that the proposed algorithm yields results comparable to the classical Expectation-Maximization (EM) technique while requiring significantly less memory and fewer computations when the number of database elements is large. We further demonstrate the potential of the approach on real large-scale data (over 10 8 training samples) for the task of model-based speaker verification. Finally, we draw some connections between the proposed framework and approximate Hilbert space embedding of probability distributions using random features. We show that the proposed sketching operator can be seen as an innovative method to design translation-invariant kernels adapted to the analysis of GMMs. We also use this theoretical framework to derive information preservation guarantees, in the spirit of infinite-dimensional compressive sensing.
88 - Huidong Liu , Yang Guo , Na Lei 2018
Variational Auto-Encoders enforce their learned intermediate latent-space data distribution to be a simple distribution, such as an isotropic Gaussian. However, this causes the posterior collapse problem and loses manifold structure which can be impo rtant for datasets such as facial images. A GAN can transform a simple distribution to a latent-space data distribution and thus preserve the manifold structure, but optimizing a GAN involves solving a Min-Max optimization problem, which is difficult and not well understood so far. Therefore, we propose a GAN-like method to transform a simple distribution to a data distribution in the latent space by solving only a minimization problem. This minimization problem comes from training a discriminator between a simple distribution and a latent-space data distribution. Then, we can explicitly formulate an Optimal Transport (OT) problem that computes the desired mapping between the two distributions. This means that we can transform a distribution without solving the difficult Min-Max optimization problem. Experimental results on an eight-Gaussian dataset show that the proposed OT can handle multi-cluster distributions. Results on the MNIST and the CelebA datasets validate the effectiveness of the proposed method.
These notes aim to shed light on the recently proposed structured projected intermediate gradient optimization technique (SPIGOT, Peng et al., 2018). SPIGOT is a variant of the straight-through estimator (Bengio et al., 2013) which bypasses gradients of the argmax function by back-propagating a surrogate gradient. We provide a new interpretation to the proposed gradient and put this technique into perspective, linking it to other methods for training neural networks with discrete latent variables. As a by-product, we suggest alternate variants of SPIGOT which will be further explored in future work.
Temporal Point Processes (TPP) with partial likelihoods involving a latent structure often entail an intractable marginalization, thus making inference hard. We propose a novel approach to Maximum Likelihood Estimation (MLE) involving approximate inf erence over the latent variables by minimizing a tight upper bound on the approximation gap. Given a discrete latent variable $Z$, the proposed approximation reduces inference complexity from $O(|Z|^c)$ to $O(|Z|)$. We use convex conjugates to determine this upper bound in a closed form and show that its addition to the optimization objective results in improved results for models assuming proportional hazards as in Survival Analysis.
Standard variational lower bounds used to train latent variable models produce biased estimates of most quantities of interest. We introduce an unbiased estimator of the log marginal likelihood and its gradients for latent variable models based on ra ndomized truncation of infinite series. If parameterized by an encoder-decoder architecture, the parameters of the encoder can be optimized to minimize its variance of this estimator. We show that models trained using our estimator give better test-set likelihoods than a standard importance-sampling based approach for the same average computational cost. This estimator also allows use of latent variable models for tasks where unbiased estimators, rather than marginal likelihood lower bounds, are preferred, such as minimizing reverse KL divergences and estimating score functions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا