ﻻ يوجد ملخص باللغة العربية
Assume we have potential causes $zin Z$, which produce events $w$ with known probabilities $beta(w|z)$. We observe $w_1,w_2,...,w_n$, what can we say about the distribution of the causes? A Bayesian estimate will assume a prior on distributions on $Z$ (we assume a Dirichlet prior) and calculate a posterior. An average over that posterior then gives a distribution on $Z$, which estimates how much each cause $z$ contributed to our observations. This is the setting of Latent Dirichlet Allocation, which can be applied e.g. to topics producing words in a document. In this setting usually the number of observed words is large, but the number of potential topics is small. We are here interested in applications with many potential causes (e.g. locations on the globe), but only a few observations. We show that the exact Bayesian estimate can be computed in linear time (and constant space) in $|Z|$ for a given upper bound on $n$ with a surprisingly simple formula. We generalize this algorithm to the case of sparse probabilities $beta(w|z)$, in which we only need to assume that the tree width of an interaction graph on the observations is limited. On the other hand we also show that without such limitation the problem is NP-hard.
We provide an end-to-end differentially private spectral algorithm for learning LDA, based on matrix/tensor decompositions, and establish theoretical guarantees on utility/consistency of the estimated model parameters. The spectral algorithm consists
We introduce a globally-convergent algorithm for optimizing the tree-reweighted (TRW) variational objective over the marginal polytope. The algorithm is based on the conditional gradient method (Frank-Wolfe) and moves pseudomarginals within the margi
We propose Dirichlet Simplex Nest, a class of probabilistic models suitable for a variety of data types, and develop fast and provably accurate inference algorithms by accounting for the models convex geometry and low dimensional simplicial structure
Multi-output Gaussian processes (MOGPs) leverage the flexibility and interpretability of GPs while capturing structure across outputs, which is desirable, for example, in spatio-temporal modelling. The key problem with MOGPs is their computational sc
We develop a sequential low-complexity inference procedure for Dirichlet process mixtures of Gaussians for online clustering and parameter estimation when the number of clusters are unknown a-priori. We present an easily computable, closed form param