ترغب بنشر مسار تعليمي؟ اضغط هنا

Latent tree models

82   0   0.0 ( 0 )
 نشر من قبل Piotr Zwiernik
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Piotr Zwiernik




اسأل ChatGPT حول البحث

Latent tree models are graphical models defined on trees, in which only a subset of variables is observed. They were first discussed by Judea Pearl as tree-decomposable distributions to generalise star-decomposable distributions such as the latent class model. Latent tree models, or their submodels, are widely used in: phylogenetic analysis, network tomography, computer vision, causal modeling, and data clustering. They also contain other well-known classes of models like hidden Markov models, Brownian motion tree model, the Ising model on a tree, and many popular models used in phylogenetics. This article offers a concise introduction to the theory of latent tree models. We emphasise the role of tree metrics in the structural description of this model class, in designing learning algorithms, and in understanding fundamental limits of what and when can be learned.



قيم البحث

اقرأ أيضاً

This paper deals with the dimension reduction for high-dimensional time series based on common factors. In particular we allow the dimension of time series $p$ to be as large as, or even larger than, the sample size $n$. The estimation for the factor loading matrix and the factor process itself is carried out via an eigenanalysis for a $ptimes p$ non-negative definite matrix. We show that when all the factors are strong in the sense that the norm of each column in the factor loading matrix is of the order $p^{1/2}$, the estimator for the factor loading matrix, as well as the resulting estimator for the precision matrix of the original $p$-variant time series, are weakly consistent in $L_2$-norm with the convergence rates independent of $p$. This result exhibits clearly that the `curse is canceled out by the `blessings in dimensionality. We also establish the asymptotic properties of the estimation when not all factors are strong. For the latter case, a two-step estimation procedure is preferred accordingly to the asymptotic theory. The proposed methods together with their asymptotic properties are further illustrated in a simulation study. An application to a real data set is also reported.
85 - Bryon Aragam , Ruiyi Yang 2021
We study uniform consistency in nonparametric mixture models as well as closely related mixture of regression (also known as mixed regression) models, where the regression functions are allowed to be nonparametric and the error distributions are assu med to be convolutions of a Gaussian density. We construct uniformly consistent estimators under general conditions while simultaneously highlighting several pain points in extending existing pointwise consistency results to uniform results. The resulting analysis turns out to be nontrivial, and several novel technical tools are developed along the way. In the case of mixed regression, we prove $L^1$ convergence of the regression functions while allowing for the component regression functions to intersect arbitrarily often, which presents additional technical challenges. We also consider generalizations to general (i.e. non-convolutional) nonparametric mixtures.
61 - Matey Neykov , Han Liu 2017
This paper explores the information-theoretic limitations of graph property testing in zero-field Ising models. Instead of learning the entire graph structure, sometimes testing a basic graph property such as connectivity, cycle presence or maximum c lique size is a more relevant and attainable objective. Since property testing is more fundamental than graph recovery, any necessary conditions for property testing imply corresponding conditions for graph recovery, while custom property tests can be statistically and/or computationally more efficient than graph recovery based algorithms. Understanding the statistical complexity of property testing requires the distinction of ferromagnetic (i.e., positive interactions only) and general Ising models. Using combinatorial constructs such as graph packing and strong monotonicity, we characterize how target properties affect the corresponding minimax upper and lower bounds within the realm of ferromagnets. On the other hand, by studying the detection of an antiferromagnetic (i.e., negative interactions only) Curie-Weiss model buried in Rademacher noise, we show that property testing is strictly more challenging over general Ising models. In terms of methodological development, we propose two types of correlation based tests: computationally efficient screening for ferromagnets, and score type tests for general models, including a fast cycle presence test. Our correlation screening tests match the information-theoretic bounds for property testing in ferromagnets.
We establish a central limit theorem for (a sequence of) multivariate martingales which dimension potentially grows with the length $n$ of the martingale. A consequence of the results are Gaussian couplings and a multiplier bootstrap for the maximum of a multivariate martingale whose dimensionality $d$ can be as large as $e^{n^c}$ for some $c>0$. We also develop new anti-concentration bounds for the maximum component of a high-dimensional Gaussian vector, which we believe is of independent interest. The results are applicable to a variety of settings. We fully develop its use to the estimation of context tree models (or variable length Markov chains) for discrete stationary time series. Specifically, we provide a bootstrap-based rule to tune several regularization parameters in a theoretically valid Lepski-type method. Such bootstrap-based approach accounts for the correlation structure and leads to potentially smaller penalty choices, which in turn improve the estimation of the transition probabilities.
The classical setting of community detection consists of networks exhibiting a clustered structure. To more accurately model real systems we consider a class of networks (i) whose edges may carry labels and (ii) which may lack a clustered structure. Specifically we assume that nodes possess latent attributes drawn from a general compact space and edges between two nodes are randomly generated and labeled according to some unknown distribution as a function of their latent attributes. Our goal is then to infer the edge label distributions from a partially observed network. We propose a computationally efficient spectral algorithm and show it allows for asymptotically correct inference when the average node degree could be as low as logarithmic in the total number of nodes. Conversely, if the average node degree is below a specific constant threshold, we show that no algorithm can achieve better inference than guessing without using the observations. As a byproduct of our analysis, we show that our model provides a general procedure to construct random graph models with a spectrum asymptotic to a pre-specified eigenvalue distribution such as a power-law distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا