ﻻ يوجد ملخص باللغة العربية
An extension of the notion of classical equivalence of equivalence in the Batalin--(Fradkin)--Vilkovisky (BV) and (BFV) framework for local Lagrangian field theory on manifolds possibly with boundary is discussed. Equivalence is phrased in both a strict and a lax sense, distinguished by the compatibility between the BV data for a field theory and its boundary BFV data, necessary for quantisation. In this context, the first- and second-order formulations of non-Abelian Yang--Mills and of classical mechanics on curved backgrounds, all of which admit a strict BV-BFV description, are shown to be pairwise equivalent as strict BV-BFV theories. This in particular implies that their BV-complexes are quasi-isomorphic. Furthermore, Jacobi theory and one-dimensional gravity coupled with scalar matter are compared as classically-equivalent reparametrisation-invaria
These notes give an introduction to the mathematical framework of the Batalin-Vilkovisky and Batalin-Fradkin-Vilkovisky formalisms. Some of the presented content was given as a mini course by the first author at the 2018 QSPACE conference in Benasque.
We show how the BV-BFV formalism provides natural solutions to descent equations, and discuss how it relates to the emergence of holographic counterparts of given gauge theories. Furthermore, by means of an AKSZ-type construction we reproduce the Che
We show how to derive asymptotic charges for field theories on manifolds with asymptotic boundary, using the BV-BFV formalism. We also prove that the conservation of said charges follows naturally from the vanishing of the BFV boundary action, and sh
This is a survey of our program of perturbative quantization of gauge theories on manifolds with boundary compatible with cutting/pasting and with gauge symmetry treated by means of a cohomological resolution (Batalin-Vilkovisky) formalism. We also g
We construct a formal global quantization of the Poisson Sigma Model in the BV-BFV formalism using the perturbative quantization of AKSZ theories on manifolds with boundary and analyze the properties of the boundary BFV operator. Moreover, we conside