ترغب بنشر مسار تعليمي؟ اضغط هنا

Perturbative BV theories with Segal-like gluing

163   0   0.0 ( 0 )
 نشر من قبل Pavel Mnev
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This is a survey of our program of perturbative quantization of gauge theories on manifolds with boundary compatible with cutting/pasting and with gauge symmetry treated by means of a cohomological resolution (Batalin-Vilkovisky) formalism. We also give two explicit quantum examples -- abelian BF theory and the Poisson sigma model. This exposition is based on a talk by P.M. at the ICMP 2015 in Santiago de Chile.



قيم البحث

اقرأ أيضاً

We study the perturbative quantization of 2-dimensional massive scalar field theory with polynomial (or power series) potential on manifolds with boundary. We prove that it fits into the functorial quantum field theory framework of Atiyah-Segal. In p articular, we prove that the perturbative partition function defined in terms of integrals over configuration spaces of points on the surface satisfies an Atiyah-Segal type gluing formula. Tadpoles (short loops) behave nontrivially under gluing and play a crucial role in the result.
An extension of the notion of classical equivalence of equivalence in the Batalin--(Fradkin)--Vilkovisky (BV) and (BFV) framework for local Lagrangian field theory on manifolds possibly with boundary is discussed. Equivalence is phrased in both a str ict and a lax sense, distinguished by the compatibility between the BV data for a field theory and its boundary BFV data, necessary for quantisation. In this context, the first- and second-order formulations of non-Abelian Yang--Mills and of classical mechanics on curved backgrounds, all of which admit a strict BV-BFV description, are shown to be pairwise equivalent as strict BV-BFV theories. This in particular implies that their BV-complexes are quasi-isomorphic. Furthermore, Jacobi theory and one-dimensional gravity coupled with scalar matter are compared as classically-equivalent reparametrisation-invaria
We describe a globalization construction for the Rozansky-Witten model in the BV-BFV formalism for a source manifold with and without boundary in the classical and quantum case. After having introduced the necessary background, we define an AKSZ sigm a model, which, upon globalization through notions of formal geometry extended appropriately to our case, is shown to reduce to the Rozansky-Witten model. The relations with other relevant constructions in the literature are discussed. Moreover, we split the model as a $BF$-like theory and we construct a perturbative quantization of the model in the quantum BV-BFV framework. In this context, we are able to prove the modified differential Quantum Master Equation and the flatness of the quantum Grothendieck BFV operator. Additionally, we provide a construction of the BFV boundary operator in some cases.
These notes give an introduction to the mathematical framework of the Batalin-Vilkovisky and Batalin-Fradkin-Vilkovisky formalisms. Some of the presented content was given as a mini course by the first author at the 2018 QSPACE conference in Benasque.
We show how the BV-BFV formalism provides natural solutions to descent equations, and discuss how it relates to the emergence of holographic counterparts of given gauge theories. Furthermore, by means of an AKSZ-type construction we reproduce the Che rn-Simons to Wess-Zumino-Witten correspondence from infinitesimal local data, and show an analogous correspondence for BF theory. We discuss how holographic correspondences relate to choices of polarisation relevant for quantisation, proposing a semi-classical interpretation of the quantum holographic principle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا