ﻻ يوجد ملخص باللغة العربية
We show how the BV-BFV formalism provides natural solutions to descent equations, and discuss how it relates to the emergence of holographic counterparts of given gauge theories. Furthermore, by means of an AKSZ-type construction we reproduce the Chern-Simons to Wess-Zumino-Witten correspondence from infinitesimal local data, and show an analogous correspondence for BF theory. We discuss how holographic correspondences relate to choices of polarisation relevant for quantisation, proposing a semi-classical interpretation of the quantum holographic principle.
We show how to derive asymptotic charges for field theories on manifolds with asymptotic boundary, using the BV-BFV formalism. We also prove that the conservation of said charges follows naturally from the vanishing of the BFV boundary action, and sh
These notes give an introduction to the mathematical framework of the Batalin-Vilkovisky and Batalin-Fradkin-Vilkovisky formalisms. Some of the presented content was given as a mini course by the first author at the 2018 QSPACE conference in Benasque.
We construct a formal global quantization of the Poisson Sigma Model in the BV-BFV formalism using the perturbative quantization of AKSZ theories on manifolds with boundary and analyze the properties of the boundary BFV operator. Moreover, we conside
We describe a globalization construction for the Rozansky-Witten model in the BV-BFV formalism for a source manifold with and without boundary in the classical and quantum case. After having introduced the necessary background, we define an AKSZ sigm
An extension of the notion of classical equivalence of equivalence in the Batalin--(Fradkin)--Vilkovisky (BV) and (BFV) framework for local Lagrangian field theory on manifolds possibly with boundary is discussed. Equivalence is phrased in both a str