ﻻ يوجد ملخص باللغة العربية
We construct a formal global quantization of the Poisson Sigma Model in the BV-BFV formalism using the perturbative quantization of AKSZ theories on manifolds with boundary and analyze the properties of the boundary BFV operator. Moreover, we consider mixed boundary conditions and show that they lead to quantum anomalies, i.e. to a failure of the (modified differential) Quantum Master Equation. We show that it can be restored by adding boundary terms to the action, at the price of introducing corner terms in the boundary operator. We also show that the quantum GBFV operator on the total space of states is a differential, i.e. squares to zero, which is necessary for a well-defined BV cohomology.
These notes give an introduction to the mathematical framework of the Batalin-Vilkovisky and Batalin-Fradkin-Vilkovisky formalisms. Some of the presented content was given as a mini course by the first author at the 2018 QSPACE conference in Benasque.
We show how to derive asymptotic charges for field theories on manifolds with asymptotic boundary, using the BV-BFV formalism. We also prove that the conservation of said charges follows naturally from the vanishing of the BFV boundary action, and sh
We describe a globalization construction for the Rozansky-Witten model in the BV-BFV formalism for a source manifold with and without boundary in the classical and quantum case. After having introduced the necessary background, we define an AKSZ sigm
We show how the BV-BFV formalism provides natural solutions to descent equations, and discuss how it relates to the emergence of holographic counterparts of given gauge theories. Furthermore, by means of an AKSZ-type construction we reproduce the Che
A globalized version of a trace formula for the Poisson Sigma Model on the disk is presented by using its formal global picture in the setting of the Batalin-Vilkovisky formalism. This global construction includes the concept of zero modes. Moreover,