ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the problem about how to bid in repeated contextual first price auctions. We consider a single bidder (learner) who repeatedly bids in the first price auctions: at each time $t$, the learner observes a context $x_tin mathbb{R}^d$ and decides the bid based on historical information and $x_t$. We assume a structured linear model of the maximum bid of all the others $m_t = alpha_0cdot x_t + z_t$, where $alpha_0in mathbb{R}^d$ is unknown to the learner and $z_t$ is randomly sampled from a noise distribution $mathcal{F}$ with log-concave density function $f$. We consider both emph{binary feedback} (the learner can only observe whether she wins or not) and emph{full information feedback} (the learner can observe $m_t$) at the end of each time $t$. For binary feedback, when the noise distribution $mathcal{F}$ is known, we propose a bidding algorithm, by using maximum likelihood estimation (MLE) method to achieve at most $widetilde{O}(sqrt{log(d) T})$ regret. Moreover, we generalize this algorithm to the setting with binary feedback and the noise distribution is unknown but belongs to a parametrized family of distributions. For the full information feedback with emph{unknown} noise distribution, we provide an algorithm that achieves regret at most $widetilde{O}(sqrt{dT})$. Our approach combines an estimator for log-concave density functions and then MLE method to learn the noise distribution $mathcal{F}$ and linear weight $alpha_0$ simultaneously. We also provide a lower bound result such that any bidding policy in a broad class must achieve regret at least $Omega(sqrt{T})$, even when the learner receives the full information feedback and $mathcal{F}$ is known.
We study online learning in repeated first-price auctions with censored feedback, where a bidder, only observing the winning bid at the end of each auction, learns to adaptively bid in order to maximize her cumulative payoff. To achieve this goal, th
Since 2019, most ad exchanges and sell-side platforms (SSPs), in the online advertising industry, shifted from second to first price auctions. Due to the fundamental difference between these auctions, demand-side platforms (DSPs) have had to update t
We present a general framework for proving polynomial sample complexity bounds for the problem of learning from samples the best auction in a class of simple auctions. Our framework captures all of the most prominent examples of simple auctions, incl
Bid leakage is a corrupt scheme in a first-price sealed-bid auction in which the procurer leaks the opponents bids to a favoured participant. The rational behaviour of such participant is to bid close to the deadline in order to receive all bids, whi
We study the problem of learning a linear model to set the reserve price in an auction, given contextual information, in order to maximize expected revenue from the seller side. First, we show that it is not possible to solve this problem in polynomi