ﻻ يوجد ملخص باللغة العربية
Designing an optimal deep neural network for a given task is important and challenging in many machine learning applications. To address this issue, we introduce a self-adaptive algorithm: the adaptive network enhancement (ANE) method, written as loops of the form train, estimate and enhance. Starting with a small two-layer neural network (NN), the step train is to solve the optimization problem at the current NN; the step estimate is to compute a posteriori estimator/indicators using the solution at the current NN; the step enhance is to add new neurons to the current NN. Novel network enhancement strategies based on the computed estimator/indicators are developed in this paper to determine how many new neurons and when a new layer should be added to the current NN. The ANE method provides a natural process for obtaining a good initialization in training the current NN; in addition, we introduce an advanced procedure on how to initialize newly added neurons for a better approximation. We demonstrate that the ANE method can automatically design a nearly minimal NN for learning functions exhibiting sharp transitional layers as well as discontinuous solutions of hyperbolic partial differential equations.
In recent work it has been established that deep neural networks are capable of approximating solutions to a large class of parabolic partial differential equations without incurring the curse of dimension. However, all this work has been restricted
In this paper, we study adaptive neuron enhancement (ANE) method for solving self-adjoint second-order elliptic partial differential equations (PDEs). The ANE method is a self-adaptive method generating a two-layer spline NN and a numerical integrati
The approximation of solutions to second order Hamilton--Jacobi--Bellman (HJB) equations by deep neural networks is investigated. It is shown that for HJB equations that arise in the context of the optimal control of certain Markov processes the solu
Various phenomena in biology, physics, and engineering are modeled by differential equations. These differential equations including partial differential equations and ordinary differential equations can be converted and represented as integral equat
Methods for solving PDEs using neural networks have recently become a very important topic. We provide an a priori error analysis for such methods which is based on the $mathcal{K}_1(mathbb{D})$-norm of the solution. We show that the resulting constr