ﻻ يوجد ملخص باللغة العربية
The approximation of solutions to second order Hamilton--Jacobi--Bellman (HJB) equations by deep neural networks is investigated. It is shown that for HJB equations that arise in the context of the optimal control of certain Markov processes the solution can be approximated by deep neural networks without incurring the curse of dimension. The dynamics is assumed to depend affinely on the controls and the cost depends quadratically on the controls. The admissible controls take values in a bounded set.
Computing optimal feedback controls for nonlinear systems generally requires solving Hamilton-Jacobi-Bellman (HJB) equations, which are notoriously difficult when the state dimension is large. Existing strategies for high-dimensional problems often r
In recent work it has been established that deep neural networks are capable of approximating solutions to a large class of parabolic partial differential equations without incurring the curse of dimension. However, all this work has been restricted
A tensor decomposition approach for the solution of high-dimensional, fully nonlinear Hamilton-Jacobi-Bellman equations arising in optimal feedback control of nonlinear dynamics is presented. The method combines a tensor train approximation for the v
A procedure for the numerical approximation of high-dimensional Hamilton-Jacobi-Bellman (HJB) equations associated to optimal feedback control problems for semilinear parabolic equations is proposed. Its main ingredients are a pseudospectral collocat
In the past decade, there are many works on the finite element methods for the fully nonlinear Hamilton--Jacobi--Bellman (HJB) equations with Cordes condition. The linearised systems have large condition numbers, which depend not only on the mesh siz