ﻻ يوجد ملخص باللغة العربية
Random subspaces $X$ of $mathbb{R}^n$ of dimension proportional to $n$ are, with high probability, well-spread with respect to the $ell_p$-norm (for $p in [1,2]$). Namely, every nonzero $x in X$ is robustly non-sparse in the following sense: $x$ is $varepsilon |x|_p$-far in $ell_p$-distance from all $delta n$-sparse vectors, for positive constants $varepsilon, delta$ bounded away from $0$. This $ell_p$-spread property is the natural counterpart, for subspaces over the reals, of the minimum distance of linear codes over finite fields, and, for $p = 2$, corresponds to $X$ being a Euclidean section of the $ell_1$ unit ball. Explicit $ell_p$-spread subspaces of dimension $Omega(n)$, however, are not known except for $p=1$. The construction for $p=1$, as well as the best known constructions for $p in (1,2]$ (which achieve weaker spread properties), are analogs of low density parity check (LDPC) codes over the reals, i.e., they are kernels of sparse matrices. We study the spread properties of the kernels of sparse random matrices. Rather surprisingly, we prove that with high probability such subspaces contain vectors $x$ that are $o(1)cdot |x|_2$-close to $o(n)$-sparse with respect to the $ell_2$-norm, and in particular are not $ell_2$-spread. On the other hand, for $p < 2$ we prove that such subspaces are $ell_p$-spread with high probability. Moreover, we show that a random sparse matrix has the stronger restricted isometry property (RIP) with respect to the $ell_p$ norm, and this follows solely from the unique expansion of a random biregular graph, yielding a somewhat unexpected generalization of a similar result for the $ell_1$ norm [BGI+08]. Instantiating this with explicit expanders, we obtain the first explicit constructions of $ell_p$-spread subspaces and $ell_p$-RIP matrices for $1 leq p < p_0$, where $1 < p_0 < 2$ is an absolute constant.
We determine the rank of a random matrix over an arbitrary field with prescribed numbers of non-zero entries in each row and column. As an application we obtain a formula for the rate of low-density parity check codes. This formula vindicates a conje
We characterize the approximate monomial complexity, sign monomial complexity , and the approximate L 1 norm of symmetric functions in terms of simple combinatorial measures of the functions. Our characterization of the approximate L 1 norm solves th
This paper was removed due to an error in the proof (Claim 4.12 as stated is not true). The authors would like to thank Ilya Volkovich for pointing out a counterexample to this papers main result in positive characteristic: If $F$ is a field with pri
Principal Component Analysis (PCA) is a powerful tool in statistics and machine learning. While existing study of PCA focuses on the recovery of principal components and their associated eigenvalues, there are few precise characterizations of individ
Accurate estimation of tail probabilities of projections of high-dimensional probability measures is of relevance in high-dimensional statistics and asymptotic geometric analysis. For fixed $p in (1,infty)$, let $(X^{(n,p)})$ and $(theta^n)$ be indep