ﻻ يوجد ملخص باللغة العربية
We characterize the approximate monomial complexity, sign monomial complexity , and the approximate L 1 norm of symmetric functions in terms of simple combinatorial measures of the functions. Our characterization of the approximate L 1 norm solves the main conjecture in [AFH12]. As an application of the characterization of the sign monomial complexity, we prove a conjecture in [ZS09] and provide a characterization for the unbounded-error communication complexity of symmetric-xor functions.
We study how well functions over the boolean hypercube of the form $f_k(x)=(|x|-k)(|x|-k-1)$ can be approximated by sums of squares of low-degree polynomials, obtaining good bounds for the case of approximation in $ell_{infty}$-norm as well as in $el
Random subspaces $X$ of $mathbb{R}^n$ of dimension proportional to $n$ are, with high probability, well-spread with respect to the $ell_p$-norm (for $p in [1,2]$). Namely, every nonzero $x in X$ is robustly non-sparse in the following sense: $x$ is $
In this paper I prove existence of an irreducible pair of operators $H$ and $H+V,$ where $H$ is a self-adjoint operator and $V$ is a self-adjoint trace-class operator, such that the singular spectral shift function of the pair is non-zero on the absolutely continuous spectrum of the operator $H.$
We extend the definitions of complexity measures of functions to domains such as the symmetric group. The complexity measures we consider include degree, approximate degree, decision tree complexity, sensitivity, block sensitivity, and a few others.
We show that every construction of one-time signature schemes from a random oracle achieves black-box security at most $2^{(1+o(1))q}$, where $q$ is the total number of oracle queries asked by the key generation, signing, and verification algorithms.