ﻻ يوجد ملخص باللغة العربية
Accurate estimation of tail probabilities of projections of high-dimensional probability measures is of relevance in high-dimensional statistics and asymptotic geometric analysis. For fixed $p in (1,infty)$, let $(X^{(n,p)})$ and $(theta^n)$ be independent sequences of random vectors with $theta^n$ distributed according to the normalized cone measure on the unit $ell_2^n$ sphere, and $X^{(n,p)}$ distributed according to the normalized cone measure on the unit $ell_p^n$ sphere. For almost every sequence of projection directions $(theta^n)$, (quenched) sharp large deviation estimates are established for suitably normalized (scalar) projections of $X^{n,p}$ onto $theta^n$, that are asymptotically exact (as the dimension $n$ tends to infinity). Furthermore, the case when $(X^{(n,p)})$ is replaced with $(mathscr{X}^{(n,p)})$, where $mathscr{X}^{(n,p)}$ is distributed according to the uniform (or normalized volume) measure on the unit $ell_p^n$ ball, is also considered. In both cases, in contrast to the (quenched) large deviation rate function, the prefactor exhibits a dependence on the projection directions $(theta^n)$ that encodes geometric information. Moreover, although the (quenched) large deviation rate functions for the sequences of random projections of $(X^{(n,p)})$ and $(mathscr{X}^{(n,p)})$ are known to coincide, it is shown that the prefactor distinguishes between these two cases. The results on the one hand provide quantitative estimates of tail probabilities of random projections of $ell_p^n$ balls and spheres, valid for finite $n$, generalizing previous results due to Gantert, Kim and Ramanan, and on the other hand, generalize classical sharp large deviation estimates in the spirit of Bahadur and Ranga Rao to a geometric setting.
In this article we prove three fundamental types of limit theorems for the $q$-norm of random vectors chosen at random in an $ell_p^n$-ball in high dimensions. We obtain a central limit theorem, a moderate deviations as well as a large deviations pri
Consider the projection of an $n$-dimensional random vector onto a random $k_n$-dimensional basis, $k_n leq n$, drawn uniformly from the Haar measure on the Stiefel manifold of orthonormal $k_n$-frames in $mathbb{R}^n$, in three different asymptotic
In this paper, we study the asymptotic thin-shell width concentration for random vectors uniformly distributed in Orlicz balls. We provide both asymptotic upper and lower bounds on the probability of such a random vector $X_n$ being in a thin shell o
Given an $n$-dimensional random vector $X^{(n)}$ , for $k < n$, consider its $k$-dimensional projection $mathbf{a}_{n,k}X^{(n)}$, where $mathbf{a}_{n,k}$ is an $n times k$-dimensional matrix belonging to the Stiefel manifold $mathbb{V}_{n,k}$ of orth
We prove a Large Deviations Principle for the number of intersections of two independent infinite-time ranges in dimension five and more, improving upon the moment bounds of Khanin, Mazel, Shlosman and Sina{i} [KMSS94]. This settles, in the discrete