ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-linear elasticity, yielding and entropy in amorphous solids

350   0   0.0 ( 0 )
 نشر من قبل Deng Pan
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The holographic principle has proven successful in linking seemingly unrelated problems in physics; a famous example is the gauge-gravity duality. Recently, intriguing correspondences between the physics of soft matter and gravity are emerging, including strong similarities between the rheology of amorphous solids, effective field theories for elasticity and the physics of black holes. However, direct comparisons between theoretical predictions and experimental/simulation observations remain limited. Here, we study the effects of non-linear elasticity on the mechanical and thermodynamic properties of amorphous materials responding to shear, using effective field and gravitational theories. The predicted correlations among the non-linear elastic exponent, the yielding strain/stress and the entropy change due to shear are supported qualitatively by simulations of granular matter models. Our approach opens a path towards understanding complex mechanical responses of amorphous solids, such as mixed effects of shear softening and shear hardening, and offers the possibility to study the rheology of solid states and black holes in a unified framework.



قيم البحث

اقرأ أيضاً

It is known by now that amorphous solids at zero temperature do not possess a nonlinear elasticity theory: besides the shear modulus which exists, all the higher order coefficients do not exist in the thermodynamic limit. Here we show that the same p henomenon persists up to temperatures comparable to the glass transition. The zero temperature mechanism due to the prevalence of dangerous plastic modes of the Hessian matrix is replaced by anomalous stress fluctuations that lead to the divergence of the variances of the higher order elastic coefficients. The conclusion is that in amorphous solids elasticity can never be decoupled from plasticity: the nonlinear response is very substantially plastic.
We demonstrate that irreversible structural reorganization is not necessary for the observation of yield behaviour in an amorphous solid. While the majority of solids strained to their yield point do indeed undergo an irreversible reorganization, we find a significant fraction of solids exhibit yield via a reversible strain. We also demonstrate that large instantaneous strains in excess of the yield stress can result in complete stress relaxation, a result of the large non-affine motions driven by the applied strain. The empirical similarity of the dependence of the ratio of stress over strain on the non-affine mean squared displacement with that for the shear modulus obtained from quiescent liquid at non-zero temperature supports the proposition that rigidity depends on the size of the sampled configurational space only, and is insensitive as to how this space is sampled.
The mechanical response of naturally abundant amorphous solids such as gels, jammed grains, and biological tissues are not described by the conventional paradigm of broken symmetry that defines crystalline elasticity. In contrast, the response of suc h athermal solids are governed by local conditions of mechanical equilibrium, i.e., force and torque balance of its constituents. Here we show that these constraints have the mathematical structure of a generalized electromagnetism, where the electrostatic limit successfully captures the anisotropic elasticity of amorphous solids. The emergence of elasticity from local mechanical constraints offers a new paradigm for systems with no broken symmetry, analogous to emergent gauge theories of quantum spin liquids. Specifically, our $U(1)$ rank-2 symmetric tensor gauge theory of elasticity translates to the electromagnetism of fractonic phases of matter with the stress mapped to electric displacement and forces to vector charges. We corroborate our theoretical results with numerical simulations of soft frictionless disks in both two and three dimensions, and experiments on frictional disks in two dimensions. We also present experimental evidence indicating that force chains in granular media are sub-dimensional excitations of amorphous elasticity similar to fractons.
130 - Srikanth Sastry 2020
Understanding the mechanical response and failure of solids is of obvious importance in their use as structural materials. The nature of plastic deformation leading to yielding of amorphous solids has been vigorously pursued in recent years. Investig ations employing both unidirectional and cyclic deformation protocols reveal a strong dependence of yielding behaviour on the degree of annealing. Below a threshold degree of annealing, the nature of yielding changes qualitatively, to progressively more discontinuous yielding. Theoretical investigations of yielding in amorphous solids have almost exclusively focused on yielding under unidirectional deformation, but cyclic deformation reveals several interesting features that remain largely un-investigated. Focusing on athermal cyclic deformation, I investigate a family of models based on an energy landscape description. These models reproduce key interesting features observed in simulations, and provide an interpretation for the intriguing presence of a threshold energy.
Disordered biopolymer gels have striking mechanical properties including strong nonlinearities. In the case of athermal gels (such as collagen-I) the nonlinearity has long been associated with a crossover from a bending dominated to a stretching domi nated regime of elasticity. The physics of this crossover is related to the existence of a central-force isostatic point and to the fact that for most gels the bending modulus is small. This crossover induces scaling behavior for the elastic moduli. In particular, for linear elasticity such a scaling law has been demonstrated [Broedersz et al. Nature Physics, 2011 7, 983]. In this work we generalize the scaling to the nonlinear regime with a two-parameter scaling law involving three critical exponents. We test the scaling law numerically for two disordered lattice models, and find a good scaling collapse for the shear modulus in both the linear and nonlinear regimes. We compute all the critical exponents for the two lattice models and discuss the applicability of our results to real systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا