ﻻ يوجد ملخص باللغة العربية
The mechanical response of naturally abundant amorphous solids such as gels, jammed grains, and biological tissues are not described by the conventional paradigm of broken symmetry that defines crystalline elasticity. In contrast, the response of such athermal solids are governed by local conditions of mechanical equilibrium, i.e., force and torque balance of its constituents. Here we show that these constraints have the mathematical structure of a generalized electromagnetism, where the electrostatic limit successfully captures the anisotropic elasticity of amorphous solids. The emergence of elasticity from local mechanical constraints offers a new paradigm for systems with no broken symmetry, analogous to emergent gauge theories of quantum spin liquids. Specifically, our $U(1)$ rank-2 symmetric tensor gauge theory of elasticity translates to the electromagnetism of fractonic phases of matter with the stress mapped to electric displacement and forces to vector charges. We corroborate our theoretical results with numerical simulations of soft frictionless disks in both two and three dimensions, and experiments on frictional disks in two dimensions. We also present experimental evidence indicating that force chains in granular media are sub-dimensional excitations of amorphous elasticity similar to fractons.
Spatial heterogeneity in the elastic properties of soft random solids is examined via vulcanization theory. The spatial heterogeneity in the emph{structure} of soft random solids is a result of the fluctuations locked-in at their synthesis, which als
Mechanical deformation of amorphous solids can be described as consisting of an elastic part in which the stress increases linearly with strain, up to a yield point at which the solid either fractures or starts deforming plastically. It is well estab
We show that the low-frequency regime of the density of states of structural glass formers is crucially sensitive to the stress-ensemble from which the configurations are sampled. Specifically, in two dimensions, an exactly isotropic ensemble with ze
Sound attenuation in low temperature amorphous solids originates from their disordered structure. However, its detailed mechanism is still being debated. Here we analyze sound attenuation starting directly from the microscopic equations of motion. We
The holographic principle has proven successful in linking seemingly unrelated problems in physics; a famous example is the gauge-gravity duality. Recently, intriguing correspondences between the physics of soft matter and gravity are emerging, inclu