ﻻ يوجد ملخص باللغة العربية
The training complexity of deep learning-based channel decoders scales exponentially with the codebook size and therefore with the number of information bits. Thus, neural network decoding (NND) is currently only feasible for very short block lengths. In this work, we show that the conventional iterative decoding algorithm for polar codes can be enhanced when sub-blocks of the decoder are replaced by neural network (NN) based components. Thus, we partition the encoding graph into smaller sub-blocks and train them individually, closely approaching maximum a posteriori (MAP) performance per sub-block. These blocks are then connected via the remaining conventional belief propagation decoding stage(s). The resulting decoding algorithm is non-iterative and inherently enables a high-level of parallelization, while showing a competitive bit error rate (BER) performance. We examine the degradation through partitioning and compare the resulting decoder to state-of-the-art polar decoders such as successive cancellation list and belief propagation decoding.
A deep-learning-aided successive-cancellation list (DL-SCL) decoding algorithm for polar codes is introduced with deep-learning-aided successive-cancellation (DL-SC) decoding being a specific case of it. The DL-SCL decoder works by allowing additiona
Fast SC decoding overcomes the latency caused by the serial nature of the SC decoding by identifying new nodes in the upper levels of the SC decoding tree and implementing their fast parallel decoders. In this work, we first present a novel sequence
We exploit the redundancy of the language-based source to help polar decoding. By judging the validity of decoded words in the decoded sequence with the help of a dictionary, the polar list decoder constantly detects erroneous paths after every few b
Polar codes are a class of linear block codes that provably achieves channel capacity, and have been selected as a coding scheme for $5^{rm th}$ generation wireless communication standards. Successive-cancellation (SC) decoding of polar codes has med
In this paper we address the problem of selecting factor-graph permutations of polar codes under belief propagation (BP) decoding to significantly improve the error-correction performance of the code. In particular, we formalize the factor-graph perm