ﻻ يوجد ملخص باللغة العربية
SSD (Single Shot Multibox Detector) is one of the most successful object detectors for its high accuracy and fast speed. However, the features from shallow layer (mainly Conv4_3) of SSD lack semantic information, resulting in poor performance in small objects. In this paper, we proposed DDSSD (Dilation and Deconvolution Single Shot Multibox Detector), an enhanced SSD with a novel feature fusion module which can improve the performance over SSD for small object detection. In the feature fusion module, dilation convolution module is utilized to enlarge the receptive field of features from shallow layer and deconvolution module is adopted to increase the size of feature maps from high layer. Our network achieves 79.7% mAP on PASCAL VOC2007 test and 28.3% mmAP on MS COCO test-dev at 41 FPS with only 300x300 input using a single Nvidia 1080 GPU. Especially, for small objects, DDSSD achieves 10.5% on MS COCO and 22.8% on FLIR thermal dataset, outperforming a lot of state-of-the-art object detection algorithms in both aspects of accuracy and speed.
For most of the object detectors based on multi-scale feature maps, the shallow layers are rich in fine spatial information and thus mainly responsible for small object detection. The performance of small object detection, however, is still less than
Single shot detectors that are potentially faster and simpler than two-stage detectors tend to be more applicable to object detection in videos. Nevertheless, the extension of such object detectors from image to video is not trivial especially when a
Object detection in aerial images is an active yet challenging task in computer vision because of the birdview perspective, the highly complex backgrounds, and the variant appearances of objects. Especially when detecting densely packed objects in ae
Early diagnosis of pulmonary nodules (PNs) can improve the survival rate of patients and yet is a challenging task for radiologists due to the image noise and artifacts in computed tomography (CT) images. In this paper, we propose a novel and effecti
We present a simple yet effective prediction module for a one-stage detector. The main process is conducted in a coarse-to-fine manner. First, the module roughly adjusts the default boxes to well capture the extent of target objects in an image. Seco