ﻻ يوجد ملخص باللغة العربية
For most of the object detectors based on multi-scale feature maps, the shallow layers are rich in fine spatial information and thus mainly responsible for small object detection. The performance of small object detection, however, is still less than satisfactory because of the deficiency of semantic information on shallow feature maps. In this paper, we design a Multi-scale Deconvolutional Single Shot Detector (MDSSD), especially for small object detection. In MDSSD, multiple high-level feature maps at different scales are upsampled simultaneously to increase the spatial resolution. Afterwards, we implement the skip connections with low-level feature maps via Fusion Block. The fusion feature maps, named Fusion Module, are of strong feature representational power of small instances. It is noteworthy that these high-level feature maps utilized in Fusion Block preserve both strong semantic information and some fine details of small instances, rather than the top-most layer where the representation of fine details for small objects are potentially wiped out. The proposed framework achieves 77.6% mAP for small object detection on the challenging dataset TT100K with 512 x 512 input, outperforming other detectors with a large margin. Moreover, it can also achieve state-of-the-art results for general object detection on PASCAL VOC2007 test and MS COCO test-dev2015, especially achieving 2 to 5 points improvement on small object categories.
SSD (Single Shot Multibox Detector) is one of the most successful object detectors for its high accuracy and fast speed. However, the features from shallow layer (mainly Conv4_3) of SSD lack semantic information, resulting in poor performance in smal
Single shot detectors that are potentially faster and simpler than two-stage detectors tend to be more applicable to object detection in videos. Nevertheless, the extension of such object detectors from image to video is not trivial especially when a
We present a simple yet effective prediction module for a one-stage detector. The main process is conducted in a coarse-to-fine manner. First, the module roughly adjusts the default boxes to well capture the extent of target objects in an image. Seco
We present a novel single-shot text detector that directly outputs word-level bounding boxes in a natural image. We propose an attention mechanism which roughly identifies text regions via an automatically learned attentional map. This substantially
Detecting scene text of arbitrary shapes has been a challenging task over the past years. In this paper, we propose a novel segmentation-based text detector, namely SAST, which employs a context attended multi-task learning framework based on a Fully