ترغب بنشر مسار تعليمي؟ اضغط هنا

Propose-and-Attend Single Shot Detector

196   0   0.0 ( 0 )
 نشر من قبل Ho-Deok Jang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a simple yet effective prediction module for a one-stage detector. The main process is conducted in a coarse-to-fine manner. First, the module roughly adjusts the default boxes to well capture the extent of target objects in an image. Second, given the adjusted boxes, the module aligns the receptive field of the convolution filters accordingly, not requiring any embedding layers. Both steps build a propose-and-attend mechanism, mimicking two-stage detectors in a highly efficient manner. To verify its effectiveness, we apply the proposed module to a basic one-stage detector SSD. Our final model achieves an accuracy comparable to that of state-of-the-art detectors while using a fraction of their model parameters and computational overheads. Moreover, we found that the proposed module has two strong applications. 1) The module can be successfully integrated into a lightweight backbone, further pushing the efficiency of the one-stage detector. 2) The module also allows train-from-scratch without relying on any sophisticated base networks as previous methods do.



قيم البحث

اقرأ أيضاً

Single shot detectors that are potentially faster and simpler than two-stage detectors tend to be more applicable to object detection in videos. Nevertheless, the extension of such object detectors from image to video is not trivial especially when a ppearance deterioration exists in videos, emph{e.g.}, motion blur or occlusion. A valid question is how to explore temporal coherence across frames for boosting detection. In this paper, we propose to address the problem by enhancing per-frame features through aggregation of neighboring frames. Specifically, we present Single Shot Video Object Detector (SSVD) -- a new architecture that novelly integrates feature aggregation into a one-stage detector for object detection in videos. Technically, SSVD takes Feature Pyramid Network (FPN) as backbone network to produce multi-scale features. Unlike the existing feature aggregation methods, SSVD, on one hand, estimates the motion and aggregates the nearby features along the motion path, and on the other, hallucinates features by directly sampling features from the adjacent frames in a two-stream structure. Extensive experiments are conducted on ImageNet VID dataset, and competitive results are reported when comparing to state-of-the-art approaches. More remarkably, for $448 times 448$ input, SSVD achieves 79.2% mAP on ImageNet VID, by processing one frame in 85 ms on an Nvidia Titan X Pascal GPU. The code is available at url{https://github.com/ddjiajun/SSVD}.
189 - Pan He , Weilin Huang , Tong He 2017
We present a novel single-shot text detector that directly outputs word-level bounding boxes in a natural image. We propose an attention mechanism which roughly identifies text regions via an automatically learned attentional map. This substantially suppresses background interference in the convolutional features, which is the key to producing accurate inference of words, particularly at extremely small sizes. This results in a single model that essentially works in a coarse-to-fine manner. It departs from recent FCN- based text detectors which cascade multiple FCN models to achieve an accurate prediction. Furthermore, we develop a hierarchical inception module which efficiently aggregates multi-scale inception features. This enhances local details, and also encodes strong context information, allow- ing the detector to work reliably on multi-scale and multi- orientation text with single-scale images. Our text detector achieves an F-measure of 77% on the ICDAR 2015 bench- mark, advancing the state-of-the-art results in [18, 28]. Demo is available at: http://sstd.whuang.org/.
We propose a robust solution to future trajectory forecast, which can be practically applicable to autonomous agents in highly crowded environments. For this, three aspects are particularly addressed in this paper. First, we use composite fields to p redict future locations of all road agents in a single-shot, which results in a constant time complexity, regardless of the number of agents in the scene. Second, interactions between agents are modeled as a non-local response, enabling spatial relationships between different locations to be captured temporally as well (i.e., in spatio-temporal interactions). Third, the semantic context of the scene are modeled and take into account the environmental constraints that potentially influence the future motion. To this end, we validate the robustness of the proposed approach using the ETH, UCY, and SDD datasets and highlight its practical functionality compared to the current state-of-the-art methods.
Fake face detection is a significant challenge for intelligent systems as generative models become more powerful every single day. As the quality of fake faces increases, the trained models become more and more inefficient to detect the novel fake fa ces, since the corresponding training data is considered outdated. In this case, robust One-Shot learning methods is more compatible with the requirements of changeable training data. In this paper, we propose a universal One-Shot GAN generated fake face detection method which can be used in significantly different areas of anomaly detection. The proposed method is based on extracting out-of-context objects from faces via scene understanding models. To do so, we use state of the art scene understanding and object detection methods as a pre-processing tool to detect the weird objects in the face. Second, we create a bag of words given all the detected out-of-context objects per all training data. This way, we transform each image into a sparse vector where each feature represents the confidence score related to each detected object in the image. Our experiments show that, we can discriminate fake faces from real ones in terms of out-of-context features. It means that, different sets of objects are detected in fake faces comparing to real ones when we analyze them with scene understanding and object detection models. We prove that, the proposed method can outperform previous methods based on our experiments on Style-GAN generated fake faces.
101 - Lisha Cui , Rui Ma , Pei Lv 2018
For most of the object detectors based on multi-scale feature maps, the shallow layers are rich in fine spatial information and thus mainly responsible for small object detection. The performance of small object detection, however, is still less than satisfactory because of the deficiency of semantic information on shallow feature maps. In this paper, we design a Multi-scale Deconvolutional Single Shot Detector (MDSSD), especially for small object detection. In MDSSD, multiple high-level feature maps at different scales are upsampled simultaneously to increase the spatial resolution. Afterwards, we implement the skip connections with low-level feature maps via Fusion Block. The fusion feature maps, named Fusion Module, are of strong feature representational power of small instances. It is noteworthy that these high-level feature maps utilized in Fusion Block preserve both strong semantic information and some fine details of small instances, rather than the top-most layer where the representation of fine details for small objects are potentially wiped out. The proposed framework achieves 77.6% mAP for small object detection on the challenging dataset TT100K with 512 x 512 input, outperforming other detectors with a large margin. Moreover, it can also achieve state-of-the-art results for general object detection on PASCAL VOC2007 test and MS COCO test-dev2015, especially achieving 2 to 5 points improvement on small object categories.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا