ترغب بنشر مسار تعليمي؟ اضغط هنا

Group-Attention Single-Shot Detector (GA-SSD): Finding Pulmonary Nodules in Large-Scale CT Images

346   0   0.0 ( 0 )
 نشر من قبل Jiechao Ma
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Early diagnosis of pulmonary nodules (PNs) can improve the survival rate of patients and yet is a challenging task for radiologists due to the image noise and artifacts in computed tomography (CT) images. In this paper, we propose a novel and effective abnormality detector implementing the attention mechanism and group convolution on 3D single-shot detector (SSD) called group-attention SSD (GA-SSD). We find that group convolution is effective in extracting rich context information between continuous slices, and attention network can learn the target features automatically. We collected a large-scale dataset that contained 4146 CT scans with annotations of varying types and sizes of PNs (even PNs smaller than 3mm were annotated). To the best of our knowledge, this dataset is the largest cohort with relatively complete annotations for PNs detection. Our experimental results show that the proposed group-attention SSD outperforms the classic SSD framework as well as the state-of-the-art 3DCNN, especially on some challenging lesion types.



قيم البحث

اقرأ أيضاً

189 - Pan He , Weilin Huang , Tong He 2017
We present a novel single-shot text detector that directly outputs word-level bounding boxes in a natural image. We propose an attention mechanism which roughly identifies text regions via an automatically learned attentional map. This substantially suppresses background interference in the convolutional features, which is the key to producing accurate inference of words, particularly at extremely small sizes. This results in a single model that essentially works in a coarse-to-fine manner. It departs from recent FCN- based text detectors which cascade multiple FCN models to achieve an accurate prediction. Furthermore, we develop a hierarchical inception module which efficiently aggregates multi-scale inception features. This enhances local details, and also encodes strong context information, allow- ing the detector to work reliably on multi-scale and multi- orientation text with single-scale images. Our text detector achieves an F-measure of 77% on the ICDAR 2015 bench- mark, advancing the state-of-the-art results in [18, 28]. Demo is available at: http://sstd.whuang.org/.
A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector helical CT images with 1.25 mm slice thickness is being developed in the framework of the INFN-supported MAGIC-5 Italian project. The basic modules of our lung-CAD system, a dot enhancement filter for nodule candidate selection and a voxel-based neural classifier for false-positive finding reduction, are described. Preliminary results obtained on the so-far collected database of lung CT scans are discussed.
93 - Hao Zhang , Xianggong Hong , 2021
SSD (Single Shot Multibox Detector) is one of the most successful object detectors for its high accuracy and fast speed. However, the features from shallow layer (mainly Conv4_3) of SSD lack semantic information, resulting in poor performance in smal l objects. In this paper, we proposed DDSSD (Dilation and Deconvolution Single Shot Multibox Detector), an enhanced SSD with a novel feature fusion module which can improve the performance over SSD for small object detection. In the feature fusion module, dilation convolution module is utilized to enlarge the receptive field of features from shallow layer and deconvolution module is adopted to increase the size of feature maps from high layer. Our network achieves 79.7% mAP on PASCAL VOC2007 test and 28.3% mmAP on MS COCO test-dev at 41 FPS with only 300x300 input using a single Nvidia 1080 GPU. Especially, for small objects, DDSSD achieves 10.5% on MS COCO and 22.8% on FLIR thermal dataset, outperforming a lot of state-of-the-art object detection algorithms in both aspects of accuracy and speed.
109 - Ning Li , Haopeng Liu , Bin Qiu 2017
This paper proposes a novel and efficient method to build a Computer-Aided Diagnoses (CAD) system for lung nodule detection based on Computed Tomography (CT). This task was treated as an Object Detection on Video (VID) problem by imitating how a radi ologist reads CT scans. A lung nodule detector was trained to automatically learn nodule features from still images to detect lung nodule candidates with both high recall and accuracy. Unlike previous work which used 3-dimensional information around the nodule to reduce false positives, we propose two simple but efficient methods, Multi-slice propagation (MSP) and Motionless-guide suppression (MLGS), which analyze sequence information of CT scans to reduce false negatives and suppress false positives. We evaluated our method in open-source LUNA16 dataset which contains 888 CT scans, and obtained state-of-the-art result (Free-Response Receiver Operating Characteristic score of 0.892) with detection speed (end to end within 20 seconds per patient on a single NVidia GTX 1080) much higher than existing methods.
Diagnosis and treatment of multiple pulmonary nodules are clinically important but challenging. Prior studies on nodule characterization use solitary-nodule approaches on multiple nodular patients, which ignores the relations between nodules. In this study, we propose a multiple instance learning (MIL) approach and empirically prove the benefit to learn the relations between multiple nodules. By treating the multiple nodules from a same patient as a whole, critical relational information between solitary-nodule voxels is extracted. To our knowledge, it is the first study to learn the relations between multiple pulmonary nodules. Inspired by recent advances in natural language processing (NLP) domain, we introduce a self-attention transformer equipped with 3D CNN, named {NoduleSAT}, to replace typical pooling-based aggregation in multiple instance learning. Extensive experiments on lung nodule false positive reduction on LUNA16 database, and malignancy classification on LIDC-IDRI database, validate the effectiveness of the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا