ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Active Learning for Text Classification with Diverse Interpretations

110   0   0.0 ( 0 )
 نشر من قبل Yanqiao Zhu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, Deep Neural Networks (DNNs) have made remarkable progress for text classification, which, however, still require a large number of labeled data. To train high-performing models with the minimal annotation cost, active learning is proposed to select and label the most informative samples, yet it is still challenging to measure informativeness of samples used in DNNs. In this paper, inspired by piece-wise linear interpretability of DNNs, we propose a novel Active Learning with DivErse iNterpretations (ALDEN) approach. With local interpretations in DNNs, ALDEN identifies linearly separable regions of samples. Then, it selects samples according to their diversity of local interpretations and queries their labels. To tackle the text classification problem, we choose the word with the most diverse interpretations to represent the whole sentence. Extensive experiments demonstrate that ALDEN consistently outperforms several state-of-the-art deep active learning methods.

قيم البحث

اقرأ أيضاً

Text generation is a crucial task in NLP. Recently, several adversarial generative models have been proposed to improve the exposure bias problem in text generation. Though these models gain great success, they still suffer from the problems of rewar d sparsity and mode collapse. In order to address these two problems, in this paper, we employ inverse reinforcement learning (IRL) for text generation. Specifically, the IRL framework learns a reward function on training data, and then an optimal policy to maximum the expected total reward. Similar to the adversarial models, the reward and policy function in IRL are optimized alternately. Our method has two advantages: (1) the reward function can produce more dense reward signals. (2) the generation policy, trained by entropy regularized policy gradient, encourages to generate more diversified texts. Experiment results demonstrate that our proposed method can generate higher quality texts than the previous methods.
Data augmentation aims to enrich training samples for alleviating the overfitting issue in low-resource or class-imbalanced situations. Traditional methods first devise task-specific operations such as Synonym Substitute, then preset the correspondin g parameters such as the substitution rate artificially, which require a lot of prior knowledge and are prone to fall into the sub-optimum. Besides, the number of editing operations is limited in the previous methods, which decreases the diversity of the augmented data and thus restricts the performance gain. To overcome the above limitations, we propose a framework named Text AutoAugment (TAA) to establish a compositional and learnable paradigm for data augmentation. We regard a combination of various operations as an augmentation policy and utilize an efficient Bayesian Optimization algorithm to automatically search for the best policy, which substantially improves the generalization capability of models. Experiments on six benchmark datasets show that TAA boosts classification accuracy in low-resource and class-imbalanced regimes by an average of 8.8% and 9.7%, respectively, outperforming strong baselines.
Recent years, the approaches based on neural networks have shown remarkable potential for sentence modeling. There are two main neural network structures: recurrent neural network (RNN) and convolution neural network (CNN). RNN can capture long term dependencies and store the semantics of the previous information in a fixed-sized vector. However, RNN is a biased model and its ability to extract global semantics is restricted by the fixed-sized vector. Alternatively, CNN is able to capture n-gram features of texts by utilizing convolutional filters. But the width of convolutional filters restricts its performance. In order to combine the strengths of the two kinds of networks and alleviate their shortcomings, this paper proposes Attention-based Multichannel Convolutional Neural Network (AMCNN) for text classification. AMCNN utilizes a bi-directional long short-term memory to encode the history and future information of words into high dimensional representations, so that the information of both the front and back of the sentence can be fully expressed. Then the scalar attention and vectorial attention are applied to obtain multichannel representations. The scalar attention can calculate the word-level importance and the vectorial attention can calculate the feature-level importance. In the classification task, AMCNN uses a CNN structure to cpture word relations on the representations generated by the scalar and vectorial attention mechanism instead of calculating the weighted sums. It can effectively extract the n-gram features of the text. The experimental results on the benchmark datasets demonstrate that AMCNN achieves better performance than state-of-the-art methods. In addition, the visualization results verify the semantic richness of multichannel representations.
Meta-learning has achieved great success in leveraging the historical learned knowledge to facilitate the learning process of the new task. However, merely learning the knowledge from the historical tasks, adopted by current meta-learning algorithms, may not generalize well to testing tasks when they are not well-supported by training tasks. This paper studies a low-resource text classification problem and bridges the gap between meta-training and meta-testing tasks by leveraging the external knowledge bases. Specifically, we propose KGML to introduce additional representation for each sentence learned from the extracted sentence-specific knowledge graph. The extensive experiments on three datasets demonstrate the effectiveness of KGML under both supervised adaptation and unsupervised adaptation settings.
CNN visualization and interpretation methods, like class-activation maps (CAMs), are typically used to highlight the image regions linked to class predictions. These models allow to simultaneously classify images and extract class-dependent saliency maps, without the need for costly pixel-level annotations. However, they typically yield segmentations with high false-positive rates and, therefore, coarse visualisations, more so when processing challenging images, as encountered in histology. To mitigate this issue, we propose an active learning (AL) framework, which progressively integrates pixel-level annotations during training. Given training data with global image-level labels, our deep weakly-supervised learning model jointly performs supervised image-level classification and active learning for segmentation, integrating pixel annotations by an oracle. Unlike standard AL methods that focus on sample selection, we also leverage large numbers of unlabeled images via pseudo-segmentations (i.e., self-learning at the pixel level), and integrate them with the oracle-annotated samples during training. We report extensive experiments over two challenging benchmarks -- high-resolution medical images (histology GlaS data for colon cancer) and natural images (CUB-200-2011 for bird species). Our results indicate that, by simply using random sample selection, the proposed approach can significantly outperform state-of the-art CAMs and AL methods, with an identical oracle-supervision budget. Our code is publicly available.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا