ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Active Learning for Joint Classification & Segmentation with Weak Annotator

108   0   0.0 ( 0 )
 نشر من قبل Soufiane Belharbi
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

CNN visualization and interpretation methods, like class-activation maps (CAMs), are typically used to highlight the image regions linked to class predictions. These models allow to simultaneously classify images and extract class-dependent saliency maps, without the need for costly pixel-level annotations. However, they typically yield segmentations with high false-positive rates and, therefore, coarse visualisations, more so when processing challenging images, as encountered in histology. To mitigate this issue, we propose an active learning (AL) framework, which progressively integrates pixel-level annotations during training. Given training data with global image-level labels, our deep weakly-supervised learning model jointly performs supervised image-level classification and active learning for segmentation, integrating pixel annotations by an oracle. Unlike standard AL methods that focus on sample selection, we also leverage large numbers of unlabeled images via pseudo-segmentations (i.e., self-learning at the pixel level), and integrate them with the oracle-annotated samples during training. We report extensive experiments over two challenging benchmarks -- high-resolution medical images (histology GlaS data for colon cancer) and natural images (CUB-200-2011 for bird species). Our results indicate that, by simply using random sample selection, the proposed approach can significantly outperform state-of the-art CAMs and AL methods, with an identical oracle-supervision budget. Our code is publicly available.

قيم البحث

اقرأ أيضاً

Semantic segmentation is a crucial task in biomedical image processing, which recent breakthroughs in deep learning have allowed to improve. However, deep learning methods in general are not yet widely used in practice since they require large amount of data for training complex models. This is particularly challenging for biomedical images, because data and ground truths are a scarce resource. Annotation efforts for biomedical images come with a real cost, since experts have to manually label images at pixel-level on samples usually containing many instances of the target anatomy (e.g. in histology samples: neurons, astrocytes, mitochondria, etc.). In this paper we provide a framework for Deep Active Learning applied to a real-world scenario. Our framework relies on the U-Net architecture and overall uncertainty measure to suggest which sample to annotate. It takes advantage of the uncertainty measure obtained by taking Monte Carlo samples while using Dropout regularization scheme. Experiments were done on spinal cord and brain microscopic histology samples to perform a myelin segmentation task. Two realistic small datasets of 14 and 24 images were used, from different acquisition settings (Serial Block-Face Electron Microscopy and Transmitting Electron Microscopy) and showed that our method reached a maximum Dice value after adding 3 uncertainty-selected samples to the initial training set, versus 15 randomly-selected samples, thereby significantly reducing the annotation effort. We focused on a plausible scenario and showed evidence that this straightforward implementation achieves a high segmentation performance with very few labelled samples. We believe our framework may benefit any biomedical researcher willing to obtain fast and accurate image segmentation on their own dataset. The code is freely available at https://github.com/neuropoly/deep-active-learning.
Although deep learning has achieved great success in image classification tasks, its performance is subject to the quantity and quality of training samples. For classification of polarimetric synthetic aperture radar (PolSAR) images, it is nearly imp ossible to annotate the images from visual interpretation. Therefore, it is urgent for remote sensing scientists to develop new techniques for PolSAR image classification under the condition of very few training samples. In this letter, we take the advantage of active learning and propose active ensemble deep learning (AEDL) for PolSAR image classification. We first show that only 35% of the predicted labels of a deep learning models snapshots near its convergence were exactly the same. The disagreement between snapshots is non-negligible. From the perspective of multiview learning, the snapshots together serve as a good committee to evaluate the importance of unlabeled instances. Using the snapshots committee to give out the informativeness of unlabeled data, the proposed AEDL achieved better performance on two real PolSAR images compared with standard active learning strategies. It achieved the same classification accuracy with only 86% and 55% of the training samples compared with breaking ties active learning and random selection for the Flevoland dataset.
We propose ViewAL, a novel active learning strategy for semantic segmentation that exploits viewpoint consistency in multi-view datasets. Our core idea is that inconsistencies in model predictions across viewpoints provide a very reliable measure of uncertainty and encourage the model to perform well irrespective of the viewpoint under which objects are observed. To incorporate this uncertainty measure, we introduce a new viewpoint entropy formulation, which is the basis of our active learning strategy. In addition, we propose uncertainty computations on a superpixel level, which exploits inherently localized signal in the segmentation task, directly lowering the annotation costs. This combination of viewpoint entropy and the use of superpixels allows to efficiently select samples that are highly informative for improving the network. We demonstrate that our proposed active learning strategy not only yields the best-performing models for the same amount of required labeled data, but also significantly reduces labeling effort. For instance, our method achieves 95% of maximum achievable network performance using only 7%, 17%, and 24% labeled data on SceneNet-RGBD, ScanNet, and Matterport3D, respectively. On these datasets, the best state-of-the-art method achieves the same performance with 14%, 27% and 33% labeled data. Finally, we demonstrate that labeling using superpixels yields the same quality of ground-truth compared to labeling whole images, but requires 25% less time.
Recently, Deep Neural Networks (DNNs) have made remarkable progress for text classification, which, however, still require a large number of labeled data. To train high-performing models with the minimal annotation cost, active learning is proposed t o select and label the most informative samples, yet it is still challenging to measure informativeness of samples used in DNNs. In this paper, inspired by piece-wise linear interpretability of DNNs, we propose a novel Active Learning with DivErse iNterpretations (ALDEN) approach. With local interpretations in DNNs, ALDEN identifies linearly separable regions of samples. Then, it selects samples according to their diversity of local interpretations and queries their labels. To tackle the text classification problem, we choose the word with the most diverse interpretations to represent the whole sentence. Extensive experiments demonstrate that ALDEN consistently outperforms several state-of-the-art deep active learning methods.
Recognition of surgical gesture is crucial for surgical skill assessment and efficient surgery training. Prior works on this task are based on either variant graphical models such as HMMs and CRFs, or deep learning models such as Recurrent Neural Net works and Temporal Convolutional Networks. Most of the current approaches usually suffer from over-segmentation and therefore low segment-level edit scores. In contrast, we present an essentially different methodology by modeling the task as a sequential decision-making process. An intelligent agent is trained using reinforcement learning with hierarchical features from a deep model. Temporal consistency is integrated into our action design and reward mechanism to reduce over-segmentation errors. Experiments on JIGSAWS dataset demonstrate that the proposed method performs better than state-of-the-art methods in terms of the edit score and on par in frame-wise accuracy. Our code will be released later.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا