ترغب بنشر مسار تعليمي؟ اضغط هنا

Toward Diverse Text Generation with Inverse Reinforcement Learning

119   0   0.0 ( 0 )
 نشر من قبل Xipeng Qiu
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Text generation is a crucial task in NLP. Recently, several adversarial generative models have been proposed to improve the exposure bias problem in text generation. Though these models gain great success, they still suffer from the problems of reward sparsity and mode collapse. In order to address these two problems, in this paper, we employ inverse reinforcement learning (IRL) for text generation. Specifically, the IRL framework learns a reward function on training data, and then an optimal policy to maximum the expected total reward. Similar to the adversarial models, the reward and policy function in IRL are optimized alternately. Our method has two advantages: (1) the reward function can produce more dense reward signals. (2) the generation policy, trained by entropy regularized policy gradient, encourages to generate more diversified texts. Experiment results demonstrate that our proposed method can generate higher quality texts than the previous methods.



قيم البحث

اقرأ أيضاً

Recently, Deep Neural Networks (DNNs) have made remarkable progress for text classification, which, however, still require a large number of labeled data. To train high-performing models with the minimal annotation cost, active learning is proposed t o select and label the most informative samples, yet it is still challenging to measure informativeness of samples used in DNNs. In this paper, inspired by piece-wise linear interpretability of DNNs, we propose a novel Active Learning with DivErse iNterpretations (ALDEN) approach. With local interpretations in DNNs, ALDEN identifies linearly separable regions of samples. Then, it selects samples according to their diversity of local interpretations and queries their labels. To tackle the text classification problem, we choose the word with the most diverse interpretations to represent the whole sentence. Extensive experiments demonstrate that ALDEN consistently outperforms several state-of-the-art deep active learning methods.
Data augmentation is proven to be effective in many NLU tasks, especially for those suffering from data scarcity. In this paper, we present a powerful and easy to deploy text augmentation framework, Data Boost, which augments data through reinforceme nt learning guided conditional generation. We evaluate Data Boost on three diverse text classification tasks under five different classifier architectures. The result shows that Data Boost can boost the performance of classifiers especially in low-resource data scenarios. For instance, Data Boost improves F1 for the three tasks by 8.7% on average when given only 10% of the whole data for training. We also compare Data Boost with six prior text augmentation methods. Through human evaluations (N=178), we confirm that Data Boost augmentation has comparable quality as the original data with respect to readability and class consistency.
In this paper, we propose Inverse Adversarial Training (IAT) algorithm for training neural dialogue systems to avoid generic responses and model dialogue history better. In contrast to standard adversarial training algorithms, IAT encourages the mode l to be sensitive to the perturbation in the dialogue history and therefore learning from perturbations. By giving higher rewards for responses whose output probability reduces more significantly when dialogue history is perturbed, the model is encouraged to generate more diverse and consistent responses. By penalizing the model when generating the same response given perturbed dialogue history, the model is forced to better capture dialogue history and generate more informative responses. Experimental results on two benchmark datasets show that our approach can better model dialogue history and generate more diverse and consistent responses. In addition, we point out a problem of the widely used maximum mutual information (MMI) based methods for improving the diversity of dialogue response generation models and demonstrate it empirically.
Maximum likelihood estimation (MLE) is the predominant algorithm for training text generation models. This paradigm relies on direct supervision examples, which is not applicable to many applications, such as generating adversarial attacks or generat ing prompts to control language models. Reinforcement learning (RL) on the other hand offers a more flexible solution by allowing users to plug in arbitrary task metrics as reward. Yet previous RL algorithms for text generation, such as policy gradient (on-policy RL) and Q-learning (off-policy RL), are often notoriously inefficient or unstable to train due to the large sequence space and the sparse reward received only at the end of sequences. In this paper, we introduce a new RL formulation for text generation from the soft Q-learning perspective. It further enables us to draw from the latest RL advances, such as path consistency learning, to combine the best of on-/off-policy updates, and learn effectively from sparse reward. We apply the approach to a wide range of tasks, including learning from noisy/negative examples, adversarial attacks, and prompt generation. Experiments show our approach consistently outperforms both task-specialized algorithms and the previous RL methods. On standard supervised tasks where MLE prevails, our approach also achieves competitive performance and stability by training text generation from scratch.
In this work, we address the problem of modifying textual attributes of sentences. Given an input sentence and a set of attribute labels, we attempt to generate sentences that are compatible with the conditioning information. To ensure that the model generates content compatible sentences, we introduce a reconstruction loss which interpolates between auto-encoding and back-translation loss components. We propose an adversarial loss to enforce generated samples to be attribute compatible and realistic. Through quantitative, qualitative and human evaluations we demonstrate that our model is capable of generating fluent sentences that better reflect the conditioning information compared to prior methods. We further demonstrate that the model is capable of simultaneously controlling multiple attributes.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا