ﻻ يوجد ملخص باللغة العربية
Federated learning allows distributed devices to collectively train a model without sharing or disclosing the local dataset with a central server. The global model is optimized by training and averaging the model parameters of all local participants. However, the improved privacy of federated learning also introduces challenges including higher computation and communication costs. In particular, federated learning converges slower than centralized training. We propose the server averaging algorithm to accelerate convergence. Sever averaging constructs the shared global model by periodically averaging a set of previous global models. Our experiments indicate that server averaging not only converges faster, to a target accuracy, than federated averaging (FedAvg), but also reduces the computation costs on the client-level through epoch decay.
Federated learning is an effective approach to realize collaborative learning among edge devices without exchanging raw data. In practice, these devices may connect to local hubs instead of connecting to the global server (aggregator) directly. Due t
In the paper, we propose an effective and efficient Compositional Federated Learning (ComFedL) algorithm for solving a new compositional Federated Learning (FL) framework, which frequently appears in many machine learning problems with a hierarchical
Personalization methods in federated learning aim to balance the benefits of federated and local training for data availability, communication cost, and robustness to client heterogeneity. Approaches that require clients to communicate all model para
Federated learning involves a mixture of centralized and decentralized processing tasks, where a server regularly selects a sample of the agents and these in turn sample their local data to compute stochastic gradients for their learning updates. Thi
We study practical data characteristics underlying federated learning, where non-i.i.d. data from clients have sparse features, and a certain clients local data normally involves only a small part of the full model, called a submodel. Due to data spa