ترغب بنشر مسار تعليمي؟ اضغط هنا

ReGenMorph: Visibly Realistic GAN Generated Face Morphing Attacks by Attack Re-generation

104   0   0.0 ( 0 )
 نشر من قبل Naser Damer
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Face morphing attacks aim at creating face images that are verifiable to be the face of multiple identities, which can lead to building faulty identity links in operations like border checks. While creating a morphed face detector (MFD), training on all possible attack types is essential to achieve good detection performance. Therefore, investigating new methods of creating morphing attacks drives the generalizability of MADs. Creating morphing attacks was performed on the image level, by landmark interpolation, or on the latent-space level, by manipulating latent vectors in a generative adversarial network. The earlier results in varying blending artifacts and the latter results in synthetic-like striping artifacts. This work presents the novel morphing pipeline, ReGenMorph, to eliminate the LMA blending artifacts by using a GAN-based generation, as well as, eliminate the manipulation in the latent space, resulting in visibly realistic morphed images compared to previous works. The generated ReGenMorph appearance is compared to recent morphing approaches and evaluated for face recognition vulnerability and attack detectability, whether as known or unknown attacks.

قيم البحث

اقرأ أيضاً

The vulnerability of Face Recognition System (FRS) to various kind of attacks (both direct and in-direct attacks) and face morphing attacks has received a great interest from the biometric community. The goal of a morphing attack is to subvert the FR S at Automatic Border Control (ABC) gates by presenting the Electronic Machine Readable Travel Document (eMRTD) or e-passport that is obtained based on the morphed face image. Since the application process for the e-passport in the majority countries requires a passport photo to be presented by the applicant, a malicious actor and the accomplice can generate the morphed face image and to obtain the e-passport. An e-passport with a morphed face images can be used by both the malicious actor and the accomplice to cross the border as the morphed face image can be verified against both of them. This can result in a significant threat as a malicious actor can cross the border without revealing the track of his/her criminal background while the details of accomplice are recorded in the log of the access control system. This survey aims to present a systematic overview of the progress made in the area of face morphing in terms of both morph generation and morph detection. In this paper, we describe and illustrate various aspects of face morphing attacks, including different techniques for generating morphed face images but also the state-of-the-art regarding Morph Attack Detection (MAD) algorithms based on a stringent taxonomy and finally the availability of public databases, which allow to benchmark new MAD algorithms in a reproducible manner. The outcomes of competitions/benchmarking, vulnerability assessments and performance evaluation metrics are also provided in a comprehensive manner. Furthermore, we discuss the open challenges and potential future works that need to be addressed in this evolving field of biometrics.
Fake face detection is a significant challenge for intelligent systems as generative models become more powerful every single day. As the quality of fake faces increases, the trained models become more and more inefficient to detect the novel fake fa ces, since the corresponding training data is considered outdated. In this case, robust One-Shot learning methods is more compatible with the requirements of changeable training data. In this paper, we propose a universal One-Shot GAN generated fake face detection method which can be used in significantly different areas of anomaly detection. The proposed method is based on extracting out-of-context objects from faces via scene understanding models. To do so, we use state of the art scene understanding and object detection methods as a pre-processing tool to detect the weird objects in the face. Second, we create a bag of words given all the detected out-of-context objects per all training data. This way, we transform each image into a sparse vector where each feature represents the confidence score related to each detected object in the image. Our experiments show that, we can discriminate fake faces from real ones in terms of out-of-context features. It means that, different sets of objects are detected in fake faces comparing to real ones when we analyze them with scene understanding and object detection models. We prove that, the proposed method can outperform previous methods based on our experiments on Style-GAN generated fake faces.
A face morphing attack image can be verified to multiple identities, making this attack a major vulnerability to processes based on identity verification, such as border checks. Different methods have been proposed to detect face morphing attacks, ho wever, with low generalizability to unexpected post-morphing processes. A major post-morphing process is the print and scan operation performed in many countries when issuing a passport or identity document. In this work, we address this generalization problem by adapting a pixel-wise supervision approach where we train a network to classify each pixel of the image into an attack or not during the training process, rather than only having one label for the whole image. Our pixel-wise morphing attack detection (PW-MAD) solution performs more accurately than a set of established baselines. More importantly, our approach shows high generalizability in comparison to related works, when evaluated on unknown re-digitized attacks. Additionally to our PW-MAD approach, we create a new face morphing attack dataset with digital and re-digitized attacks and bona fide samples, namely the LMA-DRD dataset that will be made publicly available for research purposes.
Speech-driven facial animation is useful for a variety of applications such as telepresence, chatbots, etc. The necessary attributes of having a realistic face animation are 1) audio-visual synchronization (2) identity preservation of the target indi vidual (3) plausible mouth movements (4) presence of natural eye blinks. The existing methods mostly address the audio-visual lip synchronization, and few recent works have addressed the synthesis of natural eye blinks for overall video realism. In this paper, we propose a method for identity-preserving realistic facial animation from speech. We first generate person-independent facial landmarks from audio using DeepSpeech features for invariance to different voices, accents, etc. To add realism, we impose eye blinks on facial landmarks using unsupervised learning and retargets the person-independent landmarks to person-specific landmarks to preserve the identity-related facial structure which helps in the generation of plausible mouth shapes of the target identity. Finally, we use LSGAN to generate the facial texture from person-specific facial landmarks, using an attention mechanism that helps to preserve identity-related texture. An extensive comparison of our proposed method with the current state-of-the-art methods demonstrates a significant improvement in terms of lip synchronization accuracy, image reconstruction quality, sharpness, and identity-preservation. A user study also reveals improved realism of our animation results over the state-of-the-art methods. To the best of our knowledge, this is the first work in speech-driven 2D facial animation that simultaneously addresses all the above-mentioned attributes of a realistic speech-driven face animation.
84 - Zihao Jian , Minshan Xie 2021
3D face reconstruction and face alignment are two fundamental and highly related topics in computer vision. Recently, some works start to use deep learning models to estimate the 3DMM coefficients to reconstruct 3D face geometry. However, the perform ance is restricted due to the limitation of the pre-defined face templates. To address this problem, some end-to-end methods, which can completely bypass the calculation of 3DMM coefficients, are proposed and attract much attention. In this report, we introduce and analyse three state-of-the-art methods in 3D face reconstruction and face alignment. Some potential improvement on PRN are proposed to further enhance its accuracy and speed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا