ﻻ يوجد ملخص باللغة العربية
A face morphing attack image can be verified to multiple identities, making this attack a major vulnerability to processes based on identity verification, such as border checks. Different methods have been proposed to detect face morphing attacks, however, with low generalizability to unexpected post-morphing processes. A major post-morphing process is the print and scan operation performed in many countries when issuing a passport or identity document. In this work, we address this generalization problem by adapting a pixel-wise supervision approach where we train a network to classify each pixel of the image into an attack or not during the training process, rather than only having one label for the whole image. Our pixel-wise morphing attack detection (PW-MAD) solution performs more accurately than a set of established baselines. More importantly, our approach shows high generalizability in comparison to related works, when evaluated on unknown re-digitized attacks. Additionally to our PW-MAD approach, we create a new face morphing attack dataset with digital and re-digitized attacks and bona fide samples, namely the LMA-DRD dataset that will be made publicly available for research purposes.
Face anti-spoofing (FAS) plays a vital role in securing face recognition systems from the presentation attacks (PAs). As more and more realistic PAs with novel types spring up, it is necessary to develop robust algorithms for detecting unknown attack
The vulnerability of Face Recognition System (FRS) to various kind of attacks (both direct and in-direct attacks) and face morphing attacks has received a great interest from the biometric community. The goal of a morphing attack is to subvert the FR
Iris presentation attack detection (PAD) plays a vital role in iris recognition systems. Most existing CNN-based iris PAD solutions 1) perform only binary label supervision during the training of CNNs, serving global information learning but weakenin
Morphing attacks have posed a severe threat to Face Recognition System (FRS). Despite the number of advancements reported in recent works, we note serious open issues such as independent benchmarking, generalizability challenges and considerations to
Face morphing attacks aim at creating face images that are verifiable to be the face of multiple identities, which can lead to building faulty identity links in operations like border checks. While creating a morphed face detector (MFD), training on