ترغب بنشر مسار تعليمي؟ اضغط هنا

Face Morphing Attack Generation & Detection: A Comprehensive Survey

161   0   0.0 ( 0 )
 نشر من قبل Kiran Raja Dr
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The vulnerability of Face Recognition System (FRS) to various kind of attacks (both direct and in-direct attacks) and face morphing attacks has received a great interest from the biometric community. The goal of a morphing attack is to subvert the FRS at Automatic Border Control (ABC) gates by presenting the Electronic Machine Readable Travel Document (eMRTD) or e-passport that is obtained based on the morphed face image. Since the application process for the e-passport in the majority countries requires a passport photo to be presented by the applicant, a malicious actor and the accomplice can generate the morphed face image and to obtain the e-passport. An e-passport with a morphed face images can be used by both the malicious actor and the accomplice to cross the border as the morphed face image can be verified against both of them. This can result in a significant threat as a malicious actor can cross the border without revealing the track of his/her criminal background while the details of accomplice are recorded in the log of the access control system. This survey aims to present a systematic overview of the progress made in the area of face morphing in terms of both morph generation and morph detection. In this paper, we describe and illustrate various aspects of face morphing attacks, including different techniques for generating morphed face images but also the state-of-the-art regarding Morph Attack Detection (MAD) algorithms based on a stringent taxonomy and finally the availability of public databases, which allow to benchmark new MAD algorithms in a reproducible manner. The outcomes of competitions/benchmarking, vulnerability assessments and performance evaluation metrics are also provided in a comprehensive manner. Furthermore, we discuss the open challenges and potential future works that need to be addressed in this evolving field of biometrics.



قيم البحث

اقرأ أيضاً

A face morphing attack image can be verified to multiple identities, making this attack a major vulnerability to processes based on identity verification, such as border checks. Different methods have been proposed to detect face morphing attacks, ho wever, with low generalizability to unexpected post-morphing processes. A major post-morphing process is the print and scan operation performed in many countries when issuing a passport or identity document. In this work, we address this generalization problem by adapting a pixel-wise supervision approach where we train a network to classify each pixel of the image into an attack or not during the training process, rather than only having one label for the whole image. Our pixel-wise morphing attack detection (PW-MAD) solution performs more accurately than a set of established baselines. More importantly, our approach shows high generalizability in comparison to related works, when evaluated on unknown re-digitized attacks. Additionally to our PW-MAD approach, we create a new face morphing attack dataset with digital and re-digitized attacks and bona fide samples, namely the LMA-DRD dataset that will be made publicly available for research purposes.
Face morphing attacks aim at creating face images that are verifiable to be the face of multiple identities, which can lead to building faulty identity links in operations like border checks. While creating a morphed face detector (MFD), training on all possible attack types is essential to achieve good detection performance. Therefore, investigating new methods of creating morphing attacks drives the generalizability of MADs. Creating morphing attacks was performed on the image level, by landmark interpolation, or on the latent-space level, by manipulating latent vectors in a generative adversarial network. The earlier results in varying blending artifacts and the latter results in synthetic-like striping artifacts. This work presents the novel morphing pipeline, ReGenMorph, to eliminate the LMA blending artifacts by using a GAN-based generation, as well as, eliminate the manipulation in the latent space, resulting in visibly realistic morphed images compared to previous works. The generated ReGenMorph appearance is compared to recent morphing approaches and evaluated for face recognition vulnerability and attack detectability, whether as known or unknown attacks.
Nowadays, digital facial content manipulation has become ubiquitous and realistic with the success of generative adversarial networks (GANs), making face recognition (FR) systems suffer from unprecedented security concerns. In this paper, we investig ate and introduce a new type of adversarial attack to evade FR systems by manipulating facial content, called textbf{underline{a}dversarial underline{mor}phing underline{a}ttack} (a.k.a. Amora). In contrast to adversarial noise attack that perturbs pixel intensity values by adding human-imperceptible noise, our proposed adversarial morphing attack works at the semantic level that perturbs pixels spatially in a coherent manner. To tackle the black-box attack problem, we devise a simple yet effective joint dictionary learning pipeline to obtain a proprietary optical flow field for each attack. Our extensive evaluation on two popular FR systems demonstrates the effectiveness of our adversarial morphing attack at various levels of morphing intensity with smiling facial expression manipulations. Both open-set and closed-set experimental results indicate that a novel black-box adversarial attack based on local deformation is possible, and is vastly different from additive noise attacks. The findings of this work potentially pave a new research direction towards a more thorough understanding and investigation of image-based adversarial attacks and defenses.
Morphing attacks have posed a severe threat to Face Recognition System (FRS). Despite the number of advancements reported in recent works, we note serious open issues such as independent benchmarking, generalizability challenges and considerations to age, gender, ethnicity that are inadequately addressed. Morphing Attack Detection (MAD) algorithms often are prone to generalization challenges as they are database dependent. The existing databases, mostly of semi-public nature, lack in diversity in terms of ethnicity, various morphing process and post-processing pipelines. Further, they do not reflect a realistic operational scenario for Automated Border Control (ABC) and do not provide a basis to test MAD on unseen data, in order to benchmark the robustness of algorithms. In this work, we present a new sequestered dataset for facilitating the advancements of MAD where the algorithms can be tested on unseen data in an effort to better generalize. The newly constructed dataset consists of facial images from 150 subjects from various ethnicities, age-groups and both genders. In order to challenge the existing MAD algorithms, the morphed images are with careful subject pre-selection created from the contributing images, and further post-processed to remove morphing artifacts. The images are also printed and scanned to remove all digital cues and to simulate a realistic challenge for MAD algorithms. Further, we present a new online evaluation platform to test algorithms on sequestered data. With the platform we can benchmark the morph detection performance and study the generalization ability. This work also presents a detailed analysis on various subsets of sequestered data and outlines open challenges for future directions in MAD research.
Biometric recognition is a trending technology that uses unique characteristics data to identify or verify/authenticate security applications. Amidst the classically used biometrics, voice and face attributes are the most propitious for prevalent app lications in day-to-day life because they are easy to obtain through restrained and user-friendly procedures. The pervasiveness of low-cost audio and face capture sensors in smartphones, laptops, and tablets has made the advantage of voice and face biometrics more exceptional when compared to other biometrics. For many years, acoustic information alone has been a great success in automatic speaker verification applications. Meantime, the last decade or two has also witnessed a remarkable ascent in face recognition technologies. Nonetheless, in adverse unconstrained environments, neither of these techniques achieves optimal performance. Since audio-visual information carries correlated and complementary information, integrating them into one recognition system can increase the systems performance. The vulnerability of biometrics towards presentation attacks and audio-visual data usage for the detection of such attacks is also a hot topic of research. This paper made a comprehensive survey on existing state-of-the-art audio-visual recognition techniques, publicly available databases for benchmarking, and Presentation Attack Detection (PAD) algorithms. Further, a detailed discussion on challenges and open problems is presented in this field of biometrics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا