ترغب بنشر مسار تعليمي؟ اضغط هنا

One-Shot GAN Generated Fake Face Detection

110   0   0.0 ( 0 )
 نشر من قبل Hadi Mansourifar
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Fake face detection is a significant challenge for intelligent systems as generative models become more powerful every single day. As the quality of fake faces increases, the trained models become more and more inefficient to detect the novel fake faces, since the corresponding training data is considered outdated. In this case, robust One-Shot learning methods is more compatible with the requirements of changeable training data. In this paper, we propose a universal One-Shot GAN generated fake face detection method which can be used in significantly different areas of anomaly detection. The proposed method is based on extracting out-of-context objects from faces via scene understanding models. To do so, we use state of the art scene understanding and object detection methods as a pre-processing tool to detect the weird objects in the face. Second, we create a bag of words given all the detected out-of-context objects per all training data. This way, we transform each image into a sparse vector where each feature represents the confidence score related to each detected object in the image. Our experiments show that, we can discriminate fake faces from real ones in terms of out-of-context features. It means that, different sets of objects are detected in fake faces comparing to real ones when we analyze them with scene understanding and object detection models. We prove that, the proposed method can outperform previous methods based on our experiments on Style-GAN generated fake faces.



قيم البحث

اقرأ أيضاً

125 - Yongwei Wang , Xin Ding , Li Ding 2020
Recently, generative adversarial networks (GANs) can generate photo-realistic fake facial images which are perceptually indistinguishable from real face photos, promoting research on fake face detection. Though fake face forensics can achieve high de tection accuracy, their anti-forensic counterparts are less investigated. Here we explore more textit{imperceptible} and textit{transferable} anti-forensics for fake face imagery detection based on adversarial attacks. Since facial and background regions are often smooth, even small perturbation could cause noticeable perceptual impairment in fake face images. Therefore it makes existing adversarial attacks ineffective as an anti-forensic method. Our perturbation analysis reveals the intuitive reason of the perceptual degradation issue when directly applying existing attacks. We then propose a novel adversarial attack method, better suitable for image anti-forensics, in the transformed color domain by considering visual perception. Simple yet effective, the proposed method can fool both deep learning and non-deep learning based forensic detectors, achieving higher attack success rate and significantly improved visual quality. Specially, when adversaries consider imperceptibility as a constraint, the proposed anti-forensic method can improve the average attack success rate by around 30% on fake face images over two baseline attacks. textit{More imperceptible} and textit{more transferable}, the proposed method raises new security concerns to fake face imagery detection. We have released our code for public use, and hopefully the proposed method can be further explored in related forensic applications as an anti-forensic benchmark.
Last-generation GAN models allow to generate synthetic images which are visually indistinguishable from natural ones, raising the need to develop tools to distinguish fake and natural images thus contributing to preserve the trustworthiness of digita l images. While modern GAN models can generate very high-quality images with no visible spatial artifacts, reconstruction of consistent relationships among colour channels is expectedly more difficult. In this paper, we propose a method for distinguishing GAN-generated from natural images by exploiting inconsistencies among spectral bands, with specific focus on the generation of synthetic face images. Specifically, we use cross-band co-occurrence matrices, in addition to spatial co-occurrence matrices, as input to a CNN model, which is trained to distinguish between real and synthetic faces. The results of our experiments confirm the goodness of our approach which outperforms a similar detection technique based on intra-band spatial co-occurrences only. The performance gain is particularly significant with regard to robustness against post-processing, like geometric transformations, filtering and contrast manipulations.
Accurate face detection and facial landmark localization are crucial to any face recognition system. We present a series of three single-stage RCNNs with different sized backbones (MobileNetV2-25, MobileNetV2-100, and ResNet101) and a six-layer featu re pyramid trained exclusively on the WIDER FACE dataset. We compare the face detection and landmark accuracies using eight context module architectures, four proposed by previous research and four modifi
120 - Yuhao Zhu , Qi Li , Jian Wang 2021
Face swapping has both positive applications such as entertainment, human-computer interaction, etc., and negative applications such as DeepFake threats to politics, economics, etc. Nevertheless, it is necessary to understand the scheme of advanced m ethods for high-quality face swapping and generate enough and representative face swapping images to train DeepFake detection algorithms. This paper proposes the first Megapixel level method for one shot Face Swapping (or MegaFS for short). Firstly, MegaFS organizes face representation hierarchically by the proposed Hierarchical Representation Face Encoder (HieRFE) in an extended latent space to maintain more facial details, rather than compressed representation in previous face swapping methods. Secondly, a carefully designed Face Transfer Module (FTM) is proposed to transfer the identity from a source image to the target by a non-linear trajectory without explicit feature disentanglement. Finally, the swapped faces can be synthesized by StyleGAN2 with the benefits of its training stability and powerful generative capability. Each part of MegaFS can be trained separately so the requirement of our model for GPU memory can be satisfied for megapixel face swapping. In summary, complete face representation, stable training, and limited memory usage are the three novel contributions to the success of our method. Extensive experiments demonstrate the superiority of MegaFS and the first megapixel level face swapping database is released for research on DeepFake detection and face image editing in the public domain. The dataset is at this link.
256 - Yawei Luo , Ping Liu , Tao Guan 2020
We aim at the problem named One-Shot Unsupervised Domain Adaptation. Unlike traditional Unsupervised Domain Adaptation, it assumes that only one unlabeled target sample can be available when learning to adapt. This setting is realistic but more chall enging, in which conventional adaptation approaches are prone to failure due to the scarce of unlabeled target data. To this end, we propose a novel Adversarial Style Mining approach, which combines the style transfer module and task-specific module into an adversarial manner. Specifically, the style transfer module iteratively searches for harder stylized images around the one-shot target sample according to the current learning state, leading the task model to explore the potential styles that are difficult to solve in the almost unseen target domain, thus boosting the adaptation performance in a data-scarce scenario. The adversarial learning framework makes the style transfer module and task-specific module benefit each other during the competition. Extensive experiments on both cross-domain classification and segmentation benchmarks verify that ASM achieves state-of-the-art adaptation performance under the challenging one-shot setting.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا